Identifying Anomalies in GridFTP transfers for Data-Intensive Science through Application-Awareness

D. Anantha, B. Ramamurthy, B. Bockelman, D. Swanson
{"title":"Identifying Anomalies in GridFTP transfers for Data-Intensive Science through Application-Awareness","authors":"D. Anantha, B. Ramamurthy, B. Bockelman, D. Swanson","doi":"10.1145/3180465.3180469","DOIUrl":null,"url":null,"abstract":"Network anomaly detection systems can be used to identify anomalous transfers or threats, which, when undetected, can trigger large-scale malicious events. Data-intensive science projects rely on high-throughput computing and high-speed networking resources for data analysis and processing. In this paper, we propose an anomaly detection framework and architecture for identifying anomalies in GridFTP transfers. Application-awareness plays an important role in our proposed architecture and is used to communicate GridFTP application metadata to the machine learning and anomaly detection system. We demonstrate the effectiveness of our architecture by evaluating the framework with a real-world, large-scale dataset of GridFTP transfers. Preliminary results show that our framework can be used to develop novel anomaly detection services with diverse feature sets for distributed and data-intensive projects.","PeriodicalId":20513,"journal":{"name":"Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180465.3180469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Network anomaly detection systems can be used to identify anomalous transfers or threats, which, when undetected, can trigger large-scale malicious events. Data-intensive science projects rely on high-throughput computing and high-speed networking resources for data analysis and processing. In this paper, we propose an anomaly detection framework and architecture for identifying anomalies in GridFTP transfers. Application-awareness plays an important role in our proposed architecture and is used to communicate GridFTP application metadata to the machine learning and anomaly detection system. We demonstrate the effectiveness of our architecture by evaluating the framework with a real-world, large-scale dataset of GridFTP transfers. Preliminary results show that our framework can be used to develop novel anomaly detection services with diverse feature sets for distributed and data-intensive projects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过应用感知识别数据密集型科学中GridFTP传输中的异常
网络异常检测系统可用于识别异常传输或威胁,这些异常传输或威胁如果未被检测到,可能会引发大规模恶意事件。数据密集型科学项目依靠高通量计算和高速网络资源进行数据分析和处理。在本文中,我们提出了一个异常检测框架和体系结构,用于识别GridFTP传输中的异常。应用感知在我们提出的体系结构中起着重要的作用,用于将GridFTP应用元数据传递给机器学习和异常检测系统。我们通过使用一个真实的、大规模的GridFTP传输数据集来评估该框架,从而证明了我们架构的有效性。初步结果表明,我们的框架可用于为分布式和数据密集型项目开发具有不同特征集的新型异常检测服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power Analysis Pushed too Far: Breaking Android-Based Isolation with Fuel Gauges Total Break of a Public Key Cryptosystem Based on a Group of Permutation Polynomials Improved Hybrid Attack via Error-Splitting Method for Finding Quinary Short Lattice Vectors Extractable Witness Encryption for the Homogeneous Linear Equations Problem Check Alternating Patterns: A Physical Zero-Knowledge Proof for Moon-or-Sun
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1