SVS: Adversarial refinement for sparse novel view synthesis

Violeta Men'endez Gonz'alez, Andrew Gilbert, Graeme Phillipson, Stephen Jolly, Simon Hadfield
{"title":"SVS: Adversarial refinement for sparse novel view synthesis","authors":"Violeta Men'endez Gonz'alez, Andrew Gilbert, Graeme Phillipson, Stephen Jolly, Simon Hadfield","doi":"10.48550/arXiv.2211.07301","DOIUrl":null,"url":null,"abstract":"This paper proposes Sparse View Synthesis. This is a view synthesis problem where the number of reference views is limited, and the baseline between target and reference view is significant. Under these conditions, current radiance field methods fail catastrophically due to inescapable artifacts such 3D floating blobs, blurring and structural duplication, whenever the number of reference views is limited, or the target view diverges significantly from the reference views. Advances in network architecture and loss regularisation are unable to satisfactorily remove these artifacts. The occlusions within the scene ensure that the true contents of these regions is simply not available to the model. In this work, we instead focus on hallucinating plausible scene contents within such regions. To this end we unify radiance field models with adversarial learning and perceptual losses. The resulting system provides up to 60% improvement in perceptual accuracy compared to current state-of-the-art radiance field models on this problem.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"16 1","pages":"886"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.07301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes Sparse View Synthesis. This is a view synthesis problem where the number of reference views is limited, and the baseline between target and reference view is significant. Under these conditions, current radiance field methods fail catastrophically due to inescapable artifacts such 3D floating blobs, blurring and structural duplication, whenever the number of reference views is limited, or the target view diverges significantly from the reference views. Advances in network architecture and loss regularisation are unable to satisfactorily remove these artifacts. The occlusions within the scene ensure that the true contents of these regions is simply not available to the model. In this work, we instead focus on hallucinating plausible scene contents within such regions. To this end we unify radiance field models with adversarial learning and perceptual losses. The resulting system provides up to 60% improvement in perceptual accuracy compared to current state-of-the-art radiance field models on this problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏新视图合成的对抗改进
本文提出了稀疏视图合成方法。这是一个视图综合问题,其中参考视图的数量是有限的,并且目标和参考视图之间的基线是重要的。在这种情况下,当参考视图的数量有限时,或者目标视图与参考视图明显偏离时,当前的辐射场方法由于不可避免的工件(如3D浮动斑点、模糊和结构重复)而失败。网络结构和损失正则化的进步无法令人满意地消除这些伪影。场景中的遮挡确保了这些区域的真实内容对模型来说是不可用的。在这项工作中,我们转而关注在这些区域内产生幻觉的可信场景内容。为此,我们将辐射场模型与对抗学习和感知损失统一起来。与当前最先进的辐射场模型相比,该系统在感知精度方面提供了高达60%的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Anatomically Consistent Embedding for Chest Radiography. Single Pixel Spectral Color Constancy DiffSketching: Sketch Control Image Synthesis with Diffusion Models Defect Transfer GAN: Diverse Defect Synthesis for Data Augmentation Mitigating Bias in Visual Transformers via Targeted Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1