{"title":"Juxtaposing GIS and Archaeologically Mapped Ancient Road Routes","authors":"P. Hodza, Kurtis A. Butler","doi":"10.3390/geographies2010005","DOIUrl":null,"url":null,"abstract":"Mapping ancient roads is crucial to tell credible geospatial stories about where, how, or why different people might have travelled or transported materials within and between places in the distant past. Achieving this process is challenging and commonly accomplished by means of archaeological and GIS methods and materials. It is not uncommon for different experts employing these methods to generate inconsistent delineations of the same ancient roads, creating confusion about how to produce knowledge and decisions based on multiple geospatial perspectives. This yet to be adequately addressed problem motivates our desire to enrich existing literature on the nature and extents of these differences. We juxtapose GIS and archaeologically generated road maps for northern Etruria, a region of ancient Italy with a well-developed road network built by the Etruscans and Romans. We reveal map differences through a map comparison approach that integrates a broad set of qualitative and quantitative measures plus geospatial concepts and strategies. The differences are evident in route locations, sinuosities, lengths, and complexities of the terrains on which the routes were set as defined by subtle variations in elevation, slope, and ruggedness. They ranged from 11.2–34.4 km in road length, 0–65.7 m in road relief, 1.0–13.5% in mean road grade, 0.07–0.79 in detour indices and 0.19–3.08 for mean terrain roughness indices, all of which can be considerable depending on application. Taken together, the measures proved effective in furthering our understanding of the range of possible disagreements between ancient linear features mapped by different experts and methods and are extensible for other application areas. They point to the importance of explicitly acknowledging and maintaining all usable perspectives in geospatial databases as well as visualization and analysis processes, regardless of levels of disagreement, and especially where ground-truth informed assessments cannot be reliably performed.","PeriodicalId":38507,"journal":{"name":"Human Geographies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Geographies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geographies2010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
Mapping ancient roads is crucial to tell credible geospatial stories about where, how, or why different people might have travelled or transported materials within and between places in the distant past. Achieving this process is challenging and commonly accomplished by means of archaeological and GIS methods and materials. It is not uncommon for different experts employing these methods to generate inconsistent delineations of the same ancient roads, creating confusion about how to produce knowledge and decisions based on multiple geospatial perspectives. This yet to be adequately addressed problem motivates our desire to enrich existing literature on the nature and extents of these differences. We juxtapose GIS and archaeologically generated road maps for northern Etruria, a region of ancient Italy with a well-developed road network built by the Etruscans and Romans. We reveal map differences through a map comparison approach that integrates a broad set of qualitative and quantitative measures plus geospatial concepts and strategies. The differences are evident in route locations, sinuosities, lengths, and complexities of the terrains on which the routes were set as defined by subtle variations in elevation, slope, and ruggedness. They ranged from 11.2–34.4 km in road length, 0–65.7 m in road relief, 1.0–13.5% in mean road grade, 0.07–0.79 in detour indices and 0.19–3.08 for mean terrain roughness indices, all of which can be considerable depending on application. Taken together, the measures proved effective in furthering our understanding of the range of possible disagreements between ancient linear features mapped by different experts and methods and are extensible for other application areas. They point to the importance of explicitly acknowledging and maintaining all usable perspectives in geospatial databases as well as visualization and analysis processes, regardless of levels of disagreement, and especially where ground-truth informed assessments cannot be reliably performed.