TRES: An R Package for Tensor Regression and Envelope Algorithms

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Statistical Software Pub Date : 2021-01-01 DOI:10.18637/jss.v099.i12
Jing Zeng, Wenjing Wang, Xin Zhang
{"title":"TRES: An R Package for Tensor Regression and Envelope Algorithms","authors":"Jing Zeng, Wenjing Wang, Xin Zhang","doi":"10.18637/jss.v099.i12","DOIUrl":null,"url":null,"abstract":"Recently, there has been a growing interest in tensor data analysis, where tensor regression is the cornerstone of statistical modeling for tensor data. This package provides the standard least squares estimators and the more efficient envelope estimators for the tensor response regression (TRR) and the tensor predictor regression (TPR) models. Envelope methodology is a relatively new class of dimension reduction techniques that jointly models the regression mean and covariance parameters. Three types of widely applicable envelope estimation algorithms are implemented and applied to both TRR and TPR models.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"25 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v099.i12","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

Recently, there has been a growing interest in tensor data analysis, where tensor regression is the cornerstone of statistical modeling for tensor data. This package provides the standard least squares estimators and the more efficient envelope estimators for the tensor response regression (TRR) and the tensor predictor regression (TPR) models. Envelope methodology is a relatively new class of dimension reduction techniques that jointly models the regression mean and covariance parameters. Three types of widely applicable envelope estimation algorithms are implemented and applied to both TRR and TPR models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个用于张量回归和包络算法的R包
最近,人们对张量数据分析越来越感兴趣,其中张量回归是张量数据统计建模的基石。该软件包为张量响应回归(TRR)和张量预测回归(TPR)模型提供了标准最小二乘估计器和更有效的包络估计器。包络方法是一类比较新的降维技术,它联合建模回归均值和协方差参数。实现了三种广泛应用的包络估计算法,并将其应用于TRR和TPR模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Software
Journal of Statistical Software 工程技术-计算机:跨学科应用
CiteScore
10.70
自引率
1.70%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.
期刊最新文献
spsurvey: Spatial Sampling Design and Analysis in R. Application of Equal Local Levels to Improve Q-Q Plot Testing Bands with R Package qqconf. Elastic Net Regularization Paths for All Generalized Linear Models. Broken Stick Model for Irregular Longitudinal Data jumpdiff: A Python Library for Statistical Inference of Jump-Diffusion Processes in Observational or Experimental Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1