Low-Cost Shadow Mask Fabrication for Nanoelectronics

T. Pucher, Pablo Bastante, Estrella Sánchez Viso, A. Castellanos-Gomez
{"title":"Low-Cost Shadow Mask Fabrication for Nanoelectronics","authors":"T. Pucher, Pablo Bastante, Estrella Sánchez Viso, A. Castellanos-Gomez","doi":"10.3390/nanomanufacturing3030022","DOIUrl":null,"url":null,"abstract":"We present two approaches for fabricating shadow masks for the evaporation of electrodes onto nanomaterials. In the first one, we combine the use of a commercial fiber laser engraving system with readily available aluminum foil. This method is suitable for fabricating shadow masks with line widths of 50 µm and minimum feature separation of 20 µm, and using it to create masks with complex patterns is very straightforward. In the second approach, we use a commercially available vinyl cutting machine to pattern a vinyl stencil mask, and we use a glass fiber to define the separation between the electrodes. With this approach, we achieve well-defined electrodes separated by 15 µm, but this technique is less versatile in creating complex masks as compared with the laser-based one. We demonstrate the potential of these techniques by fabricating field-effect transistor devices based on MoS2. Our approach is a cost-effective and easily accessible method for fabricating shadow masks with high resolution and accuracy, making it accessible to a wider range of laboratories.","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomanufacturing and Metrology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/nanomanufacturing3030022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

We present two approaches for fabricating shadow masks for the evaporation of electrodes onto nanomaterials. In the first one, we combine the use of a commercial fiber laser engraving system with readily available aluminum foil. This method is suitable for fabricating shadow masks with line widths of 50 µm and minimum feature separation of 20 µm, and using it to create masks with complex patterns is very straightforward. In the second approach, we use a commercially available vinyl cutting machine to pattern a vinyl stencil mask, and we use a glass fiber to define the separation between the electrodes. With this approach, we achieve well-defined electrodes separated by 15 µm, but this technique is less versatile in creating complex masks as compared with the laser-based one. We demonstrate the potential of these techniques by fabricating field-effect transistor devices based on MoS2. Our approach is a cost-effective and easily accessible method for fabricating shadow masks with high resolution and accuracy, making it accessible to a wider range of laboratories.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米电子学的低成本荫罩制造
我们提出了两种制造用于电极在纳米材料上蒸发的阴影掩模的方法。在第一个,我们结合使用商业光纤激光雕刻系统与现成的铝箔。该方法适用于制作线宽为50 μ m,最小特征间距为20 μ m的阴影蒙版,并且使用它来创建具有复杂图案的蒙版非常简单。在第二种方法中,我们使用市售的乙烯基切割机来制作乙烯基模板,我们使用玻璃纤维来定义电极之间的分离。通过这种方法,我们实现了相距15 μ m的明确电极,但与基于激光的掩模相比,这种技术在创建复杂掩模方面不太通用。我们通过制造基于二硫化钼的场效应晶体管器件来证明这些技术的潜力。我们的方法是一种具有成本效益和易于获取的方法,用于制造具有高分辨率和准确性的阴影掩模,使其可用于更广泛的实验室。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomanufacturing and Metrology
Nanomanufacturing and Metrology Materials Science-Materials Science (miscellaneous)
CiteScore
5.40
自引率
0.00%
发文量
36
期刊介绍: Nanomanufacturing and Metrology is a peer-reviewed, international and interdisciplinary research journal and is the first journal over the world that provides a principal forum for nano-manufacturing and nano-metrology.Nanomanufacturing and Metrology publishes in the forms including original articles, cutting-edge communications, timely review papers, technical reports, and case studies. Special issues devoted to developments in important topics in nano-manufacturing and metrology will be published periodically.Nanomanufacturing and Metrology publishes articles that focus on, but are not limited to, the following areas:• Nano-manufacturing and metrology• Atomic manufacturing and metrology• Micro-manufacturing and metrology• Physics, chemistry, and materials in micro-manufacturing, nano-manufacturing, and atomic manufacturing• Tools and processes for micro-manufacturing, nano-manufacturing and atomic manufacturing
期刊最新文献
Fabrication of Microstructure Arrays via Localized Electrochemical Deposition Super-Resolution by Localized Plasmonic Structured Illumination Microscopy Using Self-Assembled Nanoparticle Substrates Fluorescence-Based Calibration Model for In-Situ Measurement of Micro-scaled Lubricant Thickness Distribution at Indentation Interface Experimental Study of Electrical-Assisted Nanomachining of Monocrystalline Copper Using Customized Tungsten Tip A New Kind of Atomic Force Microscopy Scan Control Enabled by Artificial Intelligence: Concept for Achieving Tip and Sample Safety Through Asymmetric Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1