VesselVAE: Recursive Variational Autoencoders for 3D Blood Vessel Synthesis

Paula Feldman, Miguel Fainstein, Viviana Siless, C. Delrieux, Emmanuel Iarussi
{"title":"VesselVAE: Recursive Variational Autoencoders for 3D Blood Vessel Synthesis","authors":"Paula Feldman, Miguel Fainstein, Viviana Siless, C. Delrieux, Emmanuel Iarussi","doi":"10.48550/arXiv.2307.03592","DOIUrl":null,"url":null,"abstract":"We present a data-driven generative framework for synthesizing blood vessel 3D geometry. This is a challenging task due to the complexity of vascular systems, which are highly variating in shape, size, and structure. Existing model-based methods provide some degree of control and variation in the structures produced, but fail to capture the diversity of actual anatomical data. We developed VesselVAE, a recursive variational Neural Network that fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold encoding branch connectivity along with geometry features describing the target surface. After training, the VesselVAE latent space can be sampled to generate new vessel geometries. To the best of our knowledge, this work is the first to utilize this technique for synthesizing blood vessels. We achieve similarities of synthetic and real data for radius (.97), length (.95), and tortuosity (.96). By leveraging the power of deep neural networks, we generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes.","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"11 Suppl 6 1","pages":"67-76"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.03592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a data-driven generative framework for synthesizing blood vessel 3D geometry. This is a challenging task due to the complexity of vascular systems, which are highly variating in shape, size, and structure. Existing model-based methods provide some degree of control and variation in the structures produced, but fail to capture the diversity of actual anatomical data. We developed VesselVAE, a recursive variational Neural Network that fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold encoding branch connectivity along with geometry features describing the target surface. After training, the VesselVAE latent space can be sampled to generate new vessel geometries. To the best of our knowledge, this work is the first to utilize this technique for synthesizing blood vessels. We achieve similarities of synthetic and real data for radius (.97), length (.95), and tortuosity (.96). By leveraging the power of deep neural networks, we generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血管vae:递归变分自编码器三维血管合成
我们提出了一个数据驱动的生成框架,用于合成血管三维几何。由于血管系统在形状、大小和结构上的高度变化,这是一项具有挑战性的任务。现有的基于模型的方法在产生的结构中提供了一定程度的控制和变化,但无法捕获实际解剖数据的多样性。我们开发了VesselVAE,这是一种递归变分神经网络,它充分利用了容器的分层组织,并学习了编码分支连接的低维流形以及描述目标表面的几何特征。训练后,可以对VesselVAE潜空间进行采样以生成新的血管几何形状。据我们所知,这项工作是第一次利用这种技术来合成血管。我们在半径(0.97)、长度(0.95)和弯曲度(0.96)方面获得了合成数据和真实数据的相似性。通过利用深度神经网络的力量,我们生成了精确而多样的血管3D模型,这对于医学和外科训练、血流动力学模拟和许多其他目的至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MUSCLE: Multi-task Self-supervised Continual Learning to Pre-train Deep Models for X-Ray Images of Multiple Body Parts Self-pruning Graph Neural Network for Predicting Inflammatory Disease Activity in Multiple Sclerosis from Brain MR Images Self-Supervised Learning for Endoscopic Video Analysis Exploring Unsupervised Cell Recognition with Prior Self-activation Maps DMCVR: Morphology-Guided Diffusion Model for 3D Cardiac Volume Reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1