Fast influence-based coarsening for large networks

Manish Purohit, B. Prakash, Chanhyun Kang, Yao Zhang, V. S. Subrahmanian
{"title":"Fast influence-based coarsening for large networks","authors":"Manish Purohit, B. Prakash, Chanhyun Kang, Yao Zhang, V. S. Subrahmanian","doi":"10.1145/2623330.2623701","DOIUrl":null,"url":null,"abstract":"Given a social network, can we quickly 'zoom-out' of the graph? Is there a smaller equivalent representation of the graph that preserves its propagation characteristics? Can we group nodes together based on their influence properties? These are important problems with applications to influence analysis, epidemiology and viral marketing applications. In this paper, we first formulate a novel Graph Coarsening Problem to find a succinct representation of any graph while preserving key characteristics for diffusion processes on that graph. We then provide a fast and effective near-linear-time (in nodes and edges) algorithm COARSENET for the same. Using extensive experiments on multiple real datasets, we demonstrate the quality and scalability of COARSENET, enabling us to reduce the graph by 90% in some cases without much loss of information. Finally we also show how our method can help in diverse applications like influence maximization and detecting patterns of propagation at the level of automatically created groups on real cascade data.","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2623701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

Given a social network, can we quickly 'zoom-out' of the graph? Is there a smaller equivalent representation of the graph that preserves its propagation characteristics? Can we group nodes together based on their influence properties? These are important problems with applications to influence analysis, epidemiology and viral marketing applications. In this paper, we first formulate a novel Graph Coarsening Problem to find a succinct representation of any graph while preserving key characteristics for diffusion processes on that graph. We then provide a fast and effective near-linear-time (in nodes and edges) algorithm COARSENET for the same. Using extensive experiments on multiple real datasets, we demonstrate the quality and scalability of COARSENET, enabling us to reduce the graph by 90% in some cases without much loss of information. Finally we also show how our method can help in diverse applications like influence maximization and detecting patterns of propagation at the level of automatically created groups on real cascade data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对大型网络的快速基于影响的粗化
给定一个社交网络,我们能否快速“缩小”这张图?图是否有一个更小的等价表示,保留了它的传播特性?我们能否根据节点的影响属性对它们进行分组?这些都是影响分析、流行病学和病毒式营销应用中的重要问题。在本文中,我们首先提出了一个新的图粗化问题,以找到任何图的简洁表示,同时保留该图上扩散过程的关键特征。然后,我们提供了一种快速有效的近线性时间(在节点和边缘)算法COARSENET。通过对多个真实数据集的大量实验,我们证明了COARSENET的质量和可扩展性,使我们能够在某些情况下将图减少90%而不会丢失太多信息。最后,我们还展示了我们的方法如何帮助各种应用程序,如影响最大化和检测在真实级联数据上自动创建组的传播模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022 KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021 Mutually Beneficial Collaborations to Broaden Participation of Hispanics in Data Science Bringing Inclusive Diversity to Data Science: Opportunities and Challenges A Causal Look at Statistical Definitions of Discrimination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1