Prediction of Ki-67 expression of breast cancer with a multi-parametric model using MRI parameters from ultrafast DCE-MRI and DWI

Akane Ohashi, M. Kataoka, M. Iima, M. Honda, Rie Ota, Y. Urushibata, Marcel Dominik Nickel, Toi Masakazu, S. Zackrisson, Y. Nakamoto
{"title":"Prediction of Ki-67 expression of breast cancer with a multi-parametric model using MRI parameters from ultrafast DCE-MRI and DWI","authors":"Akane Ohashi, M. Kataoka, M. Iima, M. Honda, Rie Ota, Y. Urushibata, Marcel Dominik Nickel, Toi Masakazu, S. Zackrisson, Y. Nakamoto","doi":"10.1117/12.2625747","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to investigate the prediction of Ki-67 expression of breast cancers using MRI parameters from ultrafast (UF) DCE-MRI, DWI, T2WI, and the lesion size. Breast MRI was performed with a 3T scanner using dedicated breast coils. UF DCE-MRI was obtained using Compressed Sensing-VIBE (prototype sequence). As a kinetic parameter of UF DCE-MRI, maximum slope (MS) was defined as percentage relative enhancement (%/s), and time to enhance (TTE) was defined as the time interval between the aorta and lesion enhancement. The apparent diffusion coefficient (ADC) was derived from DWI. Two radiologists measured each MR parameter, and inter-rater agreement was evaluated. Univariate and multivariate logistic regression analyses were perfomed to predict low Ki-67 (<; 14%) and high Ki-67 (≥ 14%) expression using MS, TTE, ADC, T2- signal intensity (SI), and lesion size. The significant parameters (p-values of < 0.05) were selected for the prediction model, and the diagnostic performance of the model was evaluated using ROC curve analysis. A total of 191 invasive carcinomas defined as mass lesions were included (72 low Ki-67/ 119 high Ki-67 lesions). The inter-rater agreements of all parameters were excellent. After univariate and multivariate logistic regression analysis, ADC and lesion size remained significant parameters. Using these significant parameters, the multi-parametric prediction model yielded an AUC of 0.77 (95%CI of 0.70-0.84) (sensitivity 72.3%, specificity 76.4%, and PPV 83.5%, and NPV 62.5%). DWI parameter (ADC) may be more valuable than UF DCE-MRI parameters (MS, TTE) to predict high Ki-67 in mass-shaped invasive breast carcinoma.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"1 1","pages":"122860B - 122860B-8"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2625747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to investigate the prediction of Ki-67 expression of breast cancers using MRI parameters from ultrafast (UF) DCE-MRI, DWI, T2WI, and the lesion size. Breast MRI was performed with a 3T scanner using dedicated breast coils. UF DCE-MRI was obtained using Compressed Sensing-VIBE (prototype sequence). As a kinetic parameter of UF DCE-MRI, maximum slope (MS) was defined as percentage relative enhancement (%/s), and time to enhance (TTE) was defined as the time interval between the aorta and lesion enhancement. The apparent diffusion coefficient (ADC) was derived from DWI. Two radiologists measured each MR parameter, and inter-rater agreement was evaluated. Univariate and multivariate logistic regression analyses were perfomed to predict low Ki-67 (<; 14%) and high Ki-67 (≥ 14%) expression using MS, TTE, ADC, T2- signal intensity (SI), and lesion size. The significant parameters (p-values of < 0.05) were selected for the prediction model, and the diagnostic performance of the model was evaluated using ROC curve analysis. A total of 191 invasive carcinomas defined as mass lesions were included (72 low Ki-67/ 119 high Ki-67 lesions). The inter-rater agreements of all parameters were excellent. After univariate and multivariate logistic regression analysis, ADC and lesion size remained significant parameters. Using these significant parameters, the multi-parametric prediction model yielded an AUC of 0.77 (95%CI of 0.70-0.84) (sensitivity 72.3%, specificity 76.4%, and PPV 83.5%, and NPV 62.5%). DWI parameter (ADC) may be more valuable than UF DCE-MRI parameters (MS, TTE) to predict high Ki-67 in mass-shaped invasive breast carcinoma.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于超快DCE-MRI和DWI MRI参数的多参数模型预测乳腺癌Ki-67表达
本研究旨在探讨利用超快(UF) DCE-MRI、DWI、T2WI及病变大小等MRI参数对乳腺癌Ki-67表达的预测。使用专用乳房线圈,使用3T扫描仪进行乳房MRI。使用Compressed Sensing-VIBE(原型序列)获得UF DCE-MRI。作为UF DCE-MRI的动力学参数,最大斜率(MS)定义为相对增强百分比(%/s),增强时间(TTE)定义为主动脉到病变增强的时间间隔。表观扩散系数(ADC)由DWI计算得到。两名放射科医生测量了每个MR参数,并评估了评分者之间的一致性。单因素和多因素logistic回归分析预测低Ki-67 (<;通过MS、TTE、ADC、T2信号强度(SI)和病变大小计算Ki-67高表达(≥14%)。选择p值< 0.05的显著参数作为预测模型,采用ROC曲线分析评价模型的诊断性能。共有191例浸润性癌定义为肿块病变(72例低Ki-67/ 119例高Ki-67病变)。各参数间一致性良好。经单因素和多因素logistic回归分析,ADC和病变大小仍是显著参数。使用这些显著参数,多参数预测模型的AUC为0.77 (95%CI为0.70-0.84)(敏感性72.3%,特异性76.4%,PPV 83.5%, NPV 62.5%)。DWI参数(ADC)可能比UF DCE-MRI参数(MS, TTE)更有价值预测肿块状浸润性乳腺癌的高Ki-67。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness of a U-net model for different image processing types in segmentation of the mammary gland region Lesion detection in contrast enhanced spectral mammography Correspondence between areas causing recall in breast cancer screening and artificial intelligence findings Lesion detection in digital breast tomosynthesis: method, experiences and results of participating to the DBTex challenge Breast shape estimation and correction in CESM biopsy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1