Thermal Characterization of Convective Heat Transfer in Microwires Based on Modified Steady State “Hot Wire” Method

Xiaoman Wang, Rulei Guo, Qinping Jian, Guilong Peng, Y. Yue, Nuo Yang
{"title":"Thermal Characterization of Convective Heat Transfer in Microwires Based on Modified Steady State “Hot Wire” Method","authors":"Xiaoman Wang, Rulei Guo, Qinping Jian, Guilong Peng, Y. Yue, Nuo Yang","doi":"10.30919/esmm5f239","DOIUrl":null,"url":null,"abstract":"The convection plays a very important role in heat transfer when MEMS work under air environment. However, traditional measurements of convection heat transfer coefficient require the knowledge of thermal conductivity, which makes measurements complex. In this work, a modified steady state \"hot wire\" (MSSHW) method is proposed, which can measure the heat transfer coefficient of microwires' convection without the knowledge of thermal conductivity. To verify MSSHW method, the convection heat transfer coefficient of platinum microwires was measured in the atmosphere, whose value is in good agreement with values by both traditional measurement methods and empirical equations. Then, the convection heat transfer coefficient of microwires with different materials and diameters were measured by MSSHW. It is found that the convection heat transfer coefficient of microwire is not sensitive on materials, while it increases from 86 W/(m$^2$K) to 427 W/(m$^2$K) with the diameter of microwires decreasing from 120 ${\\mu}$m to 20 ${\\mu}$m. Without knowing thermal conductivity of microwires, the MSSHW method provides a more convenient way to measure the convective effect.","PeriodicalId":11851,"journal":{"name":"ES Materials & Manufacturing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ES Materials & Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30919/esmm5f239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The convection plays a very important role in heat transfer when MEMS work under air environment. However, traditional measurements of convection heat transfer coefficient require the knowledge of thermal conductivity, which makes measurements complex. In this work, a modified steady state "hot wire" (MSSHW) method is proposed, which can measure the heat transfer coefficient of microwires' convection without the knowledge of thermal conductivity. To verify MSSHW method, the convection heat transfer coefficient of platinum microwires was measured in the atmosphere, whose value is in good agreement with values by both traditional measurement methods and empirical equations. Then, the convection heat transfer coefficient of microwires with different materials and diameters were measured by MSSHW. It is found that the convection heat transfer coefficient of microwire is not sensitive on materials, while it increases from 86 W/(m$^2$K) to 427 W/(m$^2$K) with the diameter of microwires decreasing from 120 ${\mu}$m to 20 ${\mu}$m. Without knowing thermal conductivity of microwires, the MSSHW method provides a more convenient way to measure the convective effect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进稳态热丝法的微丝对流换热特性研究
MEMS在空气环境下工作时,对流在传热中起着非常重要的作用。然而,传统的对流换热系数的测量需要导热知识,这使得测量变得复杂。本文提出了一种改进的稳态“热丝”(MSSHW)方法,该方法可以在不知道热导率的情况下测量微丝对流换热系数。为了验证MSSHW方法,在大气中测量了铂微丝的对流换热系数,其值与传统测量方法和经验方程的值吻合较好。然后用MSSHW测量了不同材料和直径微丝的对流换热系数。研究发现,微丝的对流换热系数对材料不敏感,随着微丝直径从120 ${\mu}$m减小到20 ${\mu}$m,微丝的对流换热系数从86 W/(m$^2$K)增大到427 W/(m$^2$K)。在不知道微丝热导率的情况下,MSSHW方法提供了一种更方便的方法来测量对流效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing the Feasibility of Utilizing a Method for Processing Oxidized Zinc Ores Local Natural Graphite as a Promising Raw Material for the Production of Thermally Reduced Graphene-Like Films Core-Shell Structured Polyaniline (PANI) – Manganese Dioxide (MnO2) Nanocomposites as an Electrochemical Sensor for Detection of Emamectin Benzoate Enhanced Oil Recovery: Techniques, Strategies, and Advances Influence of Process Parameters on Surface Crack Density in Electrical Discharge Machining of Ni35Ti35Zr15Cu10Sn5 high-temperature high entropy shape memory alloy by Response Surface Methodology Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1