Formation of nano-sized grains in Ti-10Zr-5Nb-5Ta biomedical alloy processed by accumulative roll bonding (ARB)

I. Cincă, D. Raducanu, A. Nocivin, D. Gordin, V. Cojocaru
{"title":"Formation of nano-sized grains in Ti-10Zr-5Nb-5Ta biomedical alloy processed by accumulative roll bonding (ARB)","authors":"I. Cincă, D. Raducanu, A. Nocivin, D. Gordin, V. Cojocaru","doi":"10.4149/km_2013_3_165","DOIUrl":null,"url":null,"abstract":"Formation of nano-sized grains in a new Ti-10Zr-5Nb-5Ta (wt.%) alloy without cytotoxic elements, through innovative accumulative roll bonding (ARB) process was the subject of investigation. The investigations consisted of structural and mechanical characterization of the alloy, processed by 4 ARB cycles at ambient temperatures. The micro-structural investigations were performed before and after each ARB cycle, using a SEM analyzing system, an X-ray diffractometer and a HRTEM analyzing system. The investigations of mechanical properties were based on tensile strength, Young’s modulus, tensile elongation and micro-hardness measurements. Nano-sized grains were successfully obtained after 4 ARB cycles. The analyzed samples initially showed an ultra fine grain (UFG) structure, transformed during ARB cycles to a nano-sized grain (NG) structure, suitable for improving the alloy’s bioactivity. Consequently, the ARB process increases the strength of the samples: the values of tensile strength drastically increase in the initial stage of the ARB process, after which they tend to become saturated; the Young’s modulus constantly increases; the tensile elongation greatly decreases after 2 ARB cycles; the micro-Vickers hardness values are constantly high during ARB process. K e y w o r d s: Ti-Zr-Nb-Ta alloy, grain refining, accumulative roll bonding, structure characterization, mechanical properties testing, nano-crystalline structure","PeriodicalId":18519,"journal":{"name":"Metallic Materials","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4149/km_2013_3_165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Formation of nano-sized grains in a new Ti-10Zr-5Nb-5Ta (wt.%) alloy without cytotoxic elements, through innovative accumulative roll bonding (ARB) process was the subject of investigation. The investigations consisted of structural and mechanical characterization of the alloy, processed by 4 ARB cycles at ambient temperatures. The micro-structural investigations were performed before and after each ARB cycle, using a SEM analyzing system, an X-ray diffractometer and a HRTEM analyzing system. The investigations of mechanical properties were based on tensile strength, Young’s modulus, tensile elongation and micro-hardness measurements. Nano-sized grains were successfully obtained after 4 ARB cycles. The analyzed samples initially showed an ultra fine grain (UFG) structure, transformed during ARB cycles to a nano-sized grain (NG) structure, suitable for improving the alloy’s bioactivity. Consequently, the ARB process increases the strength of the samples: the values of tensile strength drastically increase in the initial stage of the ARB process, after which they tend to become saturated; the Young’s modulus constantly increases; the tensile elongation greatly decreases after 2 ARB cycles; the micro-Vickers hardness values are constantly high during ARB process. K e y w o r d s: Ti-Zr-Nb-Ta alloy, grain refining, accumulative roll bonding, structure characterization, mechanical properties testing, nano-crystalline structure
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
累积轧制键合Ti-10Zr-5Nb-5Ta生物医用合金纳米晶粒的形成
研究了一种不含细胞毒性元素的新型Ti-10Zr-5Nb-5Ta (wt.%)合金,通过创新的累积滚焊(ARB)工艺形成纳米级晶粒。研究包括合金的结构和力学特性,在室温下进行4次ARB循环处理。在每个ARB循环前后,使用SEM分析系统、x射线衍射仪和HRTEM分析系统进行微观结构研究。力学性能的研究是基于抗拉强度,杨氏模量,拉伸伸长率和显微硬度测量。经过4次ARB循环,成功获得纳米级颗粒。分析的样品最初表现为超细晶粒(UFG)结构,在ARB循环过程中转变为纳米晶粒(NG)结构,适合提高合金的生物活性。因此,ARB工艺提高了试样的强度:抗拉强度值在ARB工艺的初始阶段急剧增加,之后趋于饱和;杨氏模量不断增大;经过2次ARB循环后,拉伸伸长率大幅降低;在ARB过程中,显微维氏硬度值一直很高。研究方向:Ti-Zr-Nb-Ta合金,晶粒细化,累积轧制结合,组织表征,力学性能测试,纳米晶结构
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electromagnetic welding of Al-Cu: An investigation on the thickness of sheets The effect of deformation processing on tensile ductility of magnesium alloy AZ31 Investigating the effect of reinforcing particulates on the weight loss and worn surface of compocast AMCs Determination of the thermal properties of Al-Zn-Mg alloy Characterization of tensile strength and impact toughness of autogenous PCGTA weldments of aeronautical steel and austenitic stainless steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1