Use of Rotary Ultrasonic Plastic Welding as a Continuous Interconnection Technology for Large-Area e-Textiles

C. Dils, Sebastian Hohner, M. Schneider-Ramelow
{"title":"Use of Rotary Ultrasonic Plastic Welding as a Continuous Interconnection Technology for Large-Area e-Textiles","authors":"C. Dils, Sebastian Hohner, M. Schneider-Ramelow","doi":"10.3390/textiles3010006","DOIUrl":null,"url":null,"abstract":"For textile-based electronic systems with multiple contacts distributed over a large area, it is very complex to create reliable electrical and mechanical interconnections. In this work, we report for the first time on the use of rotating ultrasonic polymer welding for the continuous integration and interconnection of highly conductive ribbons with textile-integrated conductive tracks. For this purpose, the conductive ribbons are prelaminated on the bottom side with a thermoplastic film, which serves as an adhesion agent to the textile carrier, and another thermoplastic film is laminated on the top side, which serves as an electrical insulation layer. Experimental tests are used to investigate the optimum welding process parameters for each material combination. The interconnects are initially electrically measured and then tested by thermal cycling, moisture aging, buckling and washing tests, followed by electrical and optical analyses. The interconnects obtained are very low ohmic across the materials tested, with resulting contact resistances between 1 and 5 mOhm. Material-dependent results were observed in the reliability tests, with climatic and mechanical tests performing better than the wash tests for all materials. In addition, the development of a heated functional prototype demonstrates a first industrial application.","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"146 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textiles (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/textiles3010006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For textile-based electronic systems with multiple contacts distributed over a large area, it is very complex to create reliable electrical and mechanical interconnections. In this work, we report for the first time on the use of rotating ultrasonic polymer welding for the continuous integration and interconnection of highly conductive ribbons with textile-integrated conductive tracks. For this purpose, the conductive ribbons are prelaminated on the bottom side with a thermoplastic film, which serves as an adhesion agent to the textile carrier, and another thermoplastic film is laminated on the top side, which serves as an electrical insulation layer. Experimental tests are used to investigate the optimum welding process parameters for each material combination. The interconnects are initially electrically measured and then tested by thermal cycling, moisture aging, buckling and washing tests, followed by electrical and optical analyses. The interconnects obtained are very low ohmic across the materials tested, with resulting contact resistances between 1 and 5 mOhm. Material-dependent results were observed in the reliability tests, with climatic and mechanical tests performing better than the wash tests for all materials. In addition, the development of a heated functional prototype demonstrates a first industrial application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旋转超声塑料焊接作为大面积电子纺织品连续互连技术的应用
对于具有大面积分布的多个触点的基于纺织品的电子系统,创建可靠的电气和机械互连是非常复杂的。在这项工作中,我们首次报道了使用旋转超声聚合物焊接将高导电带与纺织集成导电轨道连续集成和互连。为此,在导电带的底部预先层压热塑性薄膜,热塑性薄膜作为纺织品载体的粘合剂,在顶部层压另一热塑性薄膜,作为电绝缘层。通过试验研究了各种材料组合的最佳焊接工艺参数。首先对互连进行电气测量,然后通过热循环、水分老化、屈曲和洗涤测试进行测试,然后进行电气和光学分析。所获得的互连在测试材料上的欧姆非常低,所产生的接触电阻在1到5 mOhm之间。在可靠性测试中观察到与材料相关的结果,气候和机械测试的表现优于所有材料的洗涤测试。此外,加热功能原型的开发展示了第一个工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current and Future Trends in Textiles for Concrete Construction Applications Clothing Thermophysiological Comfort: A Textile Science Perspective Effect of Post-Drawing Thermal Treatment on the Mechanical Behavior of Solid-State Drawn Poly(lactic acid) (PLA) Filaments Factors Affecting the Sweat-Drying Performance of Active Sportswear—A Review Characterization of the Viscoelastic Properties of Yarn Materials: Dynamic Mechanical Analysis in Longitudinal Direction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1