Social-minded Measures of Data Quality

E. Pitoura
{"title":"Social-minded Measures of Data Quality","authors":"E. Pitoura","doi":"10.1145/3404193","DOIUrl":null,"url":null,"abstract":"For decades, research in data-driven algorithmic systems has focused on improving efficiency (making data access faster and lighter) and effectiveness (providing relevant results to users). As data-driven decision making becomes prevalent, there is an increasing need for new measures for evaluating the quality of data systems. In this article, we make the case for social-minded measures, that is, measures that evaluate the effect of a system in society. We focus on three such measures, namely diversity (ensuring that all relevant aspects are represented), lack of bias (processing data without unjustifiable concentration on a particular side), and fairness (non discriminating treatment of data and people).","PeriodicalId":15582,"journal":{"name":"Journal of Data and Information Quality (JDIQ)","volume":"1 1","pages":"1 - 8"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data and Information Quality (JDIQ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

For decades, research in data-driven algorithmic systems has focused on improving efficiency (making data access faster and lighter) and effectiveness (providing relevant results to users). As data-driven decision making becomes prevalent, there is an increasing need for new measures for evaluating the quality of data systems. In this article, we make the case for social-minded measures, that is, measures that evaluate the effect of a system in society. We focus on three such measures, namely diversity (ensuring that all relevant aspects are represented), lack of bias (processing data without unjustifiable concentration on a particular side), and fairness (non discriminating treatment of data and people).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据质量的社会意识度量
几十年来,数据驱动算法系统的研究重点是提高效率(使数据访问更快更轻)和有效性(向用户提供相关结果)。随着数据驱动的决策变得普遍,越来越需要新的措施来评估数据系统的质量。在这篇文章中,我们提出了社会意识的措施,即评估一个系统在社会中的影响的措施。我们专注于三个这样的措施,即多样性(确保所有相关方面都得到代表),缺乏偏见(在处理数据时不会不合理地集中在某一方面)和公平性(对数据和人员的非歧视性对待)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Special Issue on Data Transparency—Data Quality, Annotation, and Provenance Challenge Paper: The Vision for Time Profiled Temporal Association Mining Editorial: Special Issue on Quality Assessment and Management in Big Data—Part I Developing a Global Data Breach Database and the Challenges Encountered Knowledge Transfer for Entity Resolution with Siamese Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1