Optical and structural properties of synthesized ZnO nanorods through chemical bath deposition on various substrates

Hanaa Flayeh Al Taay, Y. Mohammed, H. F. Oleiwi
{"title":"Optical and structural properties of synthesized ZnO nanorods through chemical bath deposition on various substrates","authors":"Hanaa Flayeh Al Taay, Y. Mohammed, H. F. Oleiwi","doi":"10.30723/ijp.v18i45.536","DOIUrl":null,"url":null,"abstract":"Chemical bath deposition was used to synthesize ZnO nanorods (NRs) on glass and fluorine_doped tin oxide (FTO) substrates. X-ray diffraction was performed to examine the crystallinity of ZnO nanorod. Results showed that ZnO NRs had a wurtzite crystal structure. Field emission scanning electron microscopy images showed that glass sample had rod-like structure distribution with (50 nm) diameter and average length of approximately (700 nm), whereas the FTO-coated glass sample had 25 nm diameter and average length of approximately 950 nm. The direct optical transition band gaps of the glass and FTO_coated glass samples were( 4 and 4.43 eV), respectively. The structural and optical properties of the synthesized ZnO products were described. The grown ZnO NRs have good optical properties. The proposed method is simple, inexpensive, soft, and environmentally friendly compared with other methods, making it appropriate for the large-scale manufacturing of devices and other app1ications.","PeriodicalId":14653,"journal":{"name":"Iraqi Journal of Physics (IJP)","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Physics (IJP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30723/ijp.v18i45.536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical bath deposition was used to synthesize ZnO nanorods (NRs) on glass and fluorine_doped tin oxide (FTO) substrates. X-ray diffraction was performed to examine the crystallinity of ZnO nanorod. Results showed that ZnO NRs had a wurtzite crystal structure. Field emission scanning electron microscopy images showed that glass sample had rod-like structure distribution with (50 nm) diameter and average length of approximately (700 nm), whereas the FTO-coated glass sample had 25 nm diameter and average length of approximately 950 nm. The direct optical transition band gaps of the glass and FTO_coated glass samples were( 4 and 4.43 eV), respectively. The structural and optical properties of the synthesized ZnO products were described. The grown ZnO NRs have good optical properties. The proposed method is simple, inexpensive, soft, and environmentally friendly compared with other methods, making it appropriate for the large-scale manufacturing of devices and other app1ications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
化学浴沉积法合成ZnO纳米棒的光学和结构特性
采用化学浴沉积法在玻璃和掺氟氧化锡(FTO)衬底上合成了ZnO纳米棒。采用x射线衍射法对ZnO纳米棒的结晶度进行了检测。结果表明,ZnO核磁共振晶体具有纤锌矿晶体结构。场发射扫描电镜图像显示,玻璃样品呈棒状结构分布,直径为(50 nm),平均长度约为(700 nm),而fto涂层玻璃样品的直径为25 nm,平均长度约为950 nm。玻璃和FTO_coated玻璃样品的直接光学跃迁带隙分别为(4和4.43 eV)。描述了合成的氧化锌产品的结构和光学性质。生长的ZnO纳米粒子具有良好的光学性能。与其他方法相比,该方法简单、廉价、柔软、环保,适用于设备的大规模制造和其他应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of The Structural, Optical, and Morphological Properties of Sno2 Nanofilms under the Influence of Gamma Rays Influence of DC Magnetron Sputtering Power on Structural, Topography, and Gas Sensor Properties of Nb2O5/Si Thin Films. Photometry technique to map elements’ distribution on comets’ nuclei surfaces by using the new method. Influence of NiTi Spring Dimensions and Temperature on the Actuator Properties Investigation of Numerical Simulation for Adaptive Optics System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1