{"title":"Machine learning for activity pattern detection","authors":"Natalia Selini Hadjidimitriou , Guido Cantelmo , Constantinos Antoniou","doi":"10.1080/15472450.2022.2084336","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a data fusion approach to automatically detect activity patterns in a GPS dataset based on travel diaries and correct misclassification errors. The Activity Patterns Detection consists of a Supervised Learning framework, thanks to which the activity purposes in the travel diaries are learned and then predicted in the GPS dataset. Furthermore, we deploy Unsupervised Learning to identify similar spatial and temporal activities in the GPS dataset and, based on travel diaries, to correct the misclassification errors. This work shows that, based on a few observations in the travel diaries and a set of features such as the resting time before the activity takes place, the number of occurrences of the same trip and the percentage of the trip made during daytime and the speed, it is possible to detect activities with an overall accuracy of 90%. Since the GPS dataset does not have information on the activity performed by the user, in reality, the aggregated results are validated based on the Kolmogorov-Smirnov test. The experiment shows that, with a confidence level of 99%, the majority of spatial and temporal feature distributions of activities in the travel diaries dataset are similar to those in the GPS dataset. Thanks to this approach, planners and transport operators can automatically obtain spatial and temporal patterns of frequent activities in urban areas.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"27 6","pages":"Pages 834-848"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245022004352","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a data fusion approach to automatically detect activity patterns in a GPS dataset based on travel diaries and correct misclassification errors. The Activity Patterns Detection consists of a Supervised Learning framework, thanks to which the activity purposes in the travel diaries are learned and then predicted in the GPS dataset. Furthermore, we deploy Unsupervised Learning to identify similar spatial and temporal activities in the GPS dataset and, based on travel diaries, to correct the misclassification errors. This work shows that, based on a few observations in the travel diaries and a set of features such as the resting time before the activity takes place, the number of occurrences of the same trip and the percentage of the trip made during daytime and the speed, it is possible to detect activities with an overall accuracy of 90%. Since the GPS dataset does not have information on the activity performed by the user, in reality, the aggregated results are validated based on the Kolmogorov-Smirnov test. The experiment shows that, with a confidence level of 99%, the majority of spatial and temporal feature distributions of activities in the travel diaries dataset are similar to those in the GPS dataset. Thanks to this approach, planners and transport operators can automatically obtain spatial and temporal patterns of frequent activities in urban areas.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.