Vision-based intelligent path planning for SCARA arm

Yogesh Gautam , Bibek Prajapati , Sandeep Dhakal , Bibek Pandeya , Bijendra Prajapati
{"title":"Vision-based intelligent path planning for SCARA arm","authors":"Yogesh Gautam ,&nbsp;Bibek Prajapati ,&nbsp;Sandeep Dhakal ,&nbsp;Bibek Pandeya ,&nbsp;Bijendra Prajapati","doi":"10.1016/j.cogr.2021.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel algorithm combining object detection and potential field algorithm for autonomous operation of SCARA arm. The start, obstacles, and goal states are located and detected through the RetinaNet Model. The model uses standard pre-trained weights as checkpoints which is trained with images from the working environment of the SCARA arm. The potential field algorithm then plans a suitable path from start to goal state avoiding obstacle state based on results from the object detection model. The algorithm is tested with a real prototype with promising results.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"1 ","pages":"Pages 168-181"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241321000161/pdfft?md5=e9df1be748e973a1418b8b610e72d135&pid=1-s2.0-S2667241321000161-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241321000161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a novel algorithm combining object detection and potential field algorithm for autonomous operation of SCARA arm. The start, obstacles, and goal states are located and detected through the RetinaNet Model. The model uses standard pre-trained weights as checkpoints which is trained with images from the working environment of the SCARA arm. The potential field algorithm then plans a suitable path from start to goal state avoiding obstacle state based on results from the object detection model. The algorithm is tested with a real prototype with promising results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉的SCARA臂智能路径规划
提出了一种将目标检测与势场算法相结合的SCARA机械臂自主操作算法。通过retanet模型定位和检测起始、障碍和目标状态。该模型使用标准的预训练权重作为检查点,并使用SCARA手臂工作环境中的图像进行训练。然后,势场算法根据目标检测模型的结果,规划从起点到目标状态的合适路径,避免障碍状态。该算法在实际样机上进行了测试,结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
期刊最新文献
Optimizing Food Sample Handling and Placement Pattern Recognition with YOLO: Advanced Techniques in Robotic Object Detection Intelligent path planning for cognitive mobile robot based on Dhouib-Matrix-SPP method YOLOT: Multi-scale and diverse tire sidewall text region detection based on You-Only-Look-Once(YOLOv5) Scalable and cohesive swarm control based on reinforcement learning POMDP-based probabilistic decision making for path planning in wheeled mobile robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1