Quantum approximate optimization of the coset leader problem for binary linear codes

IF 0.9 Q3 MATHEMATICS, APPLIED Computational and Mathematical Methods Pub Date : 2021-09-30 DOI:10.1002/cmm4.1196
Markel Epelde, Elías F. Combarro, Ignacio F. Rúa
{"title":"Quantum approximate optimization of the coset leader problem for binary linear codes","authors":"Markel Epelde,&nbsp;Elías F. Combarro,&nbsp;Ignacio F. Rúa","doi":"10.1002/cmm4.1196","DOIUrl":null,"url":null,"abstract":"<p>The security of a broad family of coding-based cryptographic techniques relies on the hardness of the Syndrome Decoding Problem (SDP). In this problem, the aim is to find a word with a given syndrome and of Hamming weight smaller than a prefixed bound. If this last condition is replaced by “of minimum weight,” then we have the Coset Leader Problem (CLP), being Finding Low Weight Codewords (FLWC) a particular case (when the zero syndrome is considered). An algorithm that has been proposed in order to obtain approximate solutions of problems of these kind (NP-complete) is the Quantum Approximate Optimization Algorithm (QAOA), a variational hybrid quantum-classical algorithm. In this paper, we apply the QAOA to the CLP for binary linear codes. We model the problem, make the theoretical analysis the case of the first level, and introduce some experiments to test its performance. The experiments have been carried out on quantum computer simulators with codes of different lengths and QAOA of different depth.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1196","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The security of a broad family of coding-based cryptographic techniques relies on the hardness of the Syndrome Decoding Problem (SDP). In this problem, the aim is to find a word with a given syndrome and of Hamming weight smaller than a prefixed bound. If this last condition is replaced by “of minimum weight,” then we have the Coset Leader Problem (CLP), being Finding Low Weight Codewords (FLWC) a particular case (when the zero syndrome is considered). An algorithm that has been proposed in order to obtain approximate solutions of problems of these kind (NP-complete) is the Quantum Approximate Optimization Algorithm (QAOA), a variational hybrid quantum-classical algorithm. In this paper, we apply the QAOA to the CLP for binary linear codes. We model the problem, make the theoretical analysis the case of the first level, and introduce some experiments to test its performance. The experiments have been carried out on quantum computer simulators with codes of different lengths and QAOA of different depth.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二进制线性码的协集前导问题的量子近似优化
一系列基于编码的密码技术的安全性依赖于综合征解码问题(SDP)的硬度。在这个问题中,目标是找到一个具有给定综合征且汉明权值小于前缀界的单词。如果最后一个条件被“最小权重”取代,那么我们就有了协集领导问题(CLP),即寻找低权重码字(FLWC)是一个特殊情况(当考虑零综合征时)。为了得到这类问题(np完全)的近似解,提出了一种变分量子-经典混合算法——量子近似优化算法(QAOA)。在本文中,我们将QAOA应用于二元线性码的CLP。我们对问题进行了建模,对第一阶段的案例进行了理论分析,并介绍了一些实验来测试其性能。在量子计算机模拟器上,用不同长度的码和不同深度的QAOA进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
A Mathematical Analysis of the Impact of Immature Mosquitoes on the Transmission Dynamics of Malaria Parameter-Uniform Convergent Numerical Approach for Time-Fractional Singularly Perturbed Partial Differential Equations With Large Time Delay Mortality Prediction in COVID-19 Using Time Series and Machine Learning Techniques On the Limitations of Univariate Grey Prediction Models: Findings and Failures Generalized Confidence Interval for the Difference Between Percentiles of Birnbaum–Saunders Distributions and Its Application to PM2.5 in Thailand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1