Exploring texture Transfer Learning for Colonic Polyp Classification via Convolutional Neural Networks

E. Ribeiro, M. Häfner, Georg Wimmer, Toru Tamaki, J. Tischendorf, S. Yoshida, Shinji Tanaka, A. Uhl
{"title":"Exploring texture Transfer Learning for Colonic Polyp Classification via Convolutional Neural Networks","authors":"E. Ribeiro, M. Häfner, Georg Wimmer, Toru Tamaki, J. Tischendorf, S. Yoshida, Shinji Tanaka, A. Uhl","doi":"10.1109/ISBI.2017.7950695","DOIUrl":null,"url":null,"abstract":"This work addresses Transfer Learning via Convolutional Neural Networks (CNN's) for the automated classification of colonic polyps in eight HD-endoscopic image databases acquired using different modalities. For this purpose, we explore if the architecture, the training approach, the number of classes, the number of images as well as the nature of the images in the training phase can influence the results. The experiments show that when the number of classes and the nature of the images are similar to the target database, the results are improved. Also, the better results obtained by the transfer learning compared to the most used features in the literature suggest that features learned by CNN's can be highly relevant for automated classification of colonic polyps.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"14 1","pages":"1044-1048"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This work addresses Transfer Learning via Convolutional Neural Networks (CNN's) for the automated classification of colonic polyps in eight HD-endoscopic image databases acquired using different modalities. For this purpose, we explore if the architecture, the training approach, the number of classes, the number of images as well as the nature of the images in the training phase can influence the results. The experiments show that when the number of classes and the nature of the images are similar to the target database, the results are improved. Also, the better results obtained by the transfer learning compared to the most used features in the literature suggest that features learned by CNN's can be highly relevant for automated classification of colonic polyps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的结肠息肉分类纹理迁移学习研究
这项工作通过卷积神经网络(CNN)进行迁移学习,用于在使用不同方式获得的八个高清内窥镜图像数据库中对结肠息肉进行自动分类。为此,我们探讨了结构、训练方法、类的数量、图像的数量以及训练阶段图像的性质是否会影响结果。实验表明,当分类数量和图像性质与目标数据库相似时,结果得到了改善。此外,与文献中最常用的特征相比,迁移学习获得的结果更好,这表明CNN学习的特征与结肠息肉的自动分类高度相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of adrenal lesions through spatial Bayesian modeling of GLCM Correction of partial volume effect in 99mTc-TRODAT-1 brain SPECT images using an edge-preserving weighted regularization Two-dimensional speckle tracking using parabolic polynomial expansion with Riesz transform Elastic registration of high-resolution 3D PLI data of the human brain Registration of ultra-high resolution 3D PLI data of human brain sections to their corresponding high-resolution counterpart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1