Optimal Detection of Bilinear Dependence in Short Panels of Regression Data

A. Lmakri, A. Akharif, A. Mellouk
{"title":"Optimal Detection of Bilinear Dependence in Short Panels of Regression Data","authors":"A. Lmakri, A. Akharif, A. Mellouk","doi":"10.15446/rce.v43n2.83044","DOIUrl":null,"url":null,"abstract":"In this paper, we propose parametric and nonparametric locally and asymptotically optimal tests for regression models with superdiagonal bilinear time series errors in short panel data (large n , small T ). We establish a local asymptotic normality property– with respect to intercept μ, regression coefficient β, the scale parameter σ of the error, and the parameter b of panel superdiagonal bilinear model (which is the parameter of interest)– for a given density f1 of the error terms. Rank-based versions of optimal parametric tests are provided. This result, which allows, by Hajek’s representation theorem, the construction of locally asymptotically optimal rank-based tests for the null hypothesis b = 0 (absence of panel superdiagonal bilinear model). These tests –at specified innovation densities f1– are optimal (most stringent), but remain valid under any actual underlying density. From contiguity, we obtain the limiting distribution of our test statistics under the null and local sequences of alternatives. The asymptotic relative efficiencies, with respect to the pseudo-Gaussian parametric tests, are derived. A Monte Carlo study confirms the good performance of the proposed tests.","PeriodicalId":54477,"journal":{"name":"Revista Colombiana De Estadistica","volume":"153 7 1","pages":"143-171"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana De Estadistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/rce.v43n2.83044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose parametric and nonparametric locally and asymptotically optimal tests for regression models with superdiagonal bilinear time series errors in short panel data (large n , small T ). We establish a local asymptotic normality property– with respect to intercept μ, regression coefficient β, the scale parameter σ of the error, and the parameter b of panel superdiagonal bilinear model (which is the parameter of interest)– for a given density f1 of the error terms. Rank-based versions of optimal parametric tests are provided. This result, which allows, by Hajek’s representation theorem, the construction of locally asymptotically optimal rank-based tests for the null hypothesis b = 0 (absence of panel superdiagonal bilinear model). These tests –at specified innovation densities f1– are optimal (most stringent), but remain valid under any actual underlying density. From contiguity, we obtain the limiting distribution of our test statistics under the null and local sequences of alternatives. The asymptotic relative efficiencies, with respect to the pseudo-Gaussian parametric tests, are derived. A Monte Carlo study confirms the good performance of the proposed tests.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短组回归数据双线性相关性的最优检测
本文提出了短面板数据(大n,小T)中具有超对角双线性时间序列误差的回归模型的参数和非参数局部最优检验。我们建立了一个局部渐近正态性-关于截距μ,回归系数β,误差的尺度参数σ和面板超对角双线性模型的参数b(这是我们感兴趣的参数)-对于给定密度f1的误差项。提供了基于秩的最优参数测试版本。利用Hajek的表示定理,可以构造零假设b = 0(不存在面板超对角双线性模型)的局部渐近最优秩检验。这些测试-在指定的创新密度f1 -是最佳的(最严格的),但在任何实际的潜在密度下仍然有效。从邻接性出发,得到了我们的检验统计量在空序列和局部序列下的极限分布。推导了伪高斯参数检验的渐近相对效率。蒙特卡洛研究证实了所提出的测试的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Colombiana De Estadistica
Revista Colombiana De Estadistica STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Colombian Journal of Statistics publishes original articles of theoretical, methodological and educational kind in any branch of Statistics. Purely theoretical papers should include illustration of the techniques presented with real data or at least simulation experiments in order to verify the usefulness of the contents presented. Informative articles of high quality methodologies or statistical techniques applied in different fields of knowledge are also considered. Only articles in English language are considered for publication. The Editorial Committee assumes that the works submitted for evaluation have not been previously published and are not being given simultaneously for publication elsewhere, and will not be without prior consent of the Committee, unless, as a result of the assessment, decides not publish in the journal. It is further assumed that when the authors deliver a document for publication in the Colombian Journal of Statistics, they know the above conditions and agree with them.
期刊最新文献
An Improved Estimator of finite Population Variance Using two Auxiliary Variable SRS Imputation of Missing Data Through Product Type Exponential Methods in Sampling Theory Objective Prior Distributions to Estimate the Parameters of the Poisson-Exponential Distribution Robust Post-Hoc Multiple Comparisons: Skew t Distributed Error Terms Nonparametric Prediction for Spatial Dependent Functional Data Under Fixed Sampling Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1