Collective Multi-type Entity Alignment Between Knowledge Graphs

Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, C. Faloutsos, Xin Dong, Jiawei Han
{"title":"Collective Multi-type Entity Alignment Between Knowledge Graphs","authors":"Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, C. Faloutsos, Xin Dong, Jiawei Han","doi":"10.1145/3366423.3380289","DOIUrl":null,"url":null,"abstract":"Knowledge graph (e.g. Freebase, YAGO) is a multi-relational graph representing rich factual information among entities of various types. Entity alignment is the key step towards knowledge graph integration from multiple sources. It aims to identify entities across different knowledge graphs that refer to the same real world entity. However, current entity alignment systems overlook the sparsity of different knowledge graphs and can not align multi-type entities by one single model. In this paper, we present a Collective Graph neural network for Multi-type entity Alignment, called CG-MuAlign. Different from previous work, CG-MuAlign jointly aligns multiple types of entities, collectively leverages the neighborhood information and generalizes to unlabeled entity types. Specifically, we propose novel collective aggregation function tailored for this task, that (1) relieves the incompleteness of knowledge graphs via both cross-graph and self attentions, (2) scales up efficiently with mini-batch training paradigm and effective neighborhood sampling strategy. We conduct experiments on real world knowledge graphs with millions of entities and observe the superior performance beyond existing methods. In addition, the running time of our approach is much less than the current state-of-the-art deep learning methods.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Knowledge graph (e.g. Freebase, YAGO) is a multi-relational graph representing rich factual information among entities of various types. Entity alignment is the key step towards knowledge graph integration from multiple sources. It aims to identify entities across different knowledge graphs that refer to the same real world entity. However, current entity alignment systems overlook the sparsity of different knowledge graphs and can not align multi-type entities by one single model. In this paper, we present a Collective Graph neural network for Multi-type entity Alignment, called CG-MuAlign. Different from previous work, CG-MuAlign jointly aligns multiple types of entities, collectively leverages the neighborhood information and generalizes to unlabeled entity types. Specifically, we propose novel collective aggregation function tailored for this task, that (1) relieves the incompleteness of knowledge graphs via both cross-graph and self attentions, (2) scales up efficiently with mini-batch training paradigm and effective neighborhood sampling strategy. We conduct experiments on real world knowledge graphs with millions of entities and observe the superior performance beyond existing methods. In addition, the running time of our approach is much less than the current state-of-the-art deep learning methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
知识图谱之间的集体多类型实体对齐
知识图(如Freebase, YAGO)是一种多关系图,表示各种类型实体之间丰富的事实信息。实体对齐是实现多源知识图谱集成的关键步骤。它的目的是在不同的知识图谱中识别指向同一个现实世界实体的实体。然而,现有的实体对齐系统忽视了不同知识图的稀疏性,无法通过单一模型对多种类型的实体进行对齐。本文提出了一种用于多类型实体对齐的集体图神经网络,称为CG-MuAlign。与以往的工作不同,CG-MuAlign联合对齐多种类型的实体,共同利用邻域信息,并推广到未标记的实体类型。具体来说,我们提出了一种新的集体聚集函数,它(1)通过交叉图和自关注来缓解知识图的不完全性,(2)通过小批量训练范式和有效的邻域采样策略来有效地扩展。我们在包含数百万个实体的真实世界知识图上进行了实验,并观察到超越现有方法的优越性能。此外,我们的方法的运行时间比目前最先进的深度学习方法要短得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gone, Gone, but Not Really, and Gone, But Not forgotten: A Typology of Website Recoverability Those who are left behind: A chronicle of internet access in Cuba Towards Automated Technologies in the Referencing Quality of Wikidata Companion of The Web Conference 2022, Virtual Event / Lyon, France, April 25 - 29, 2022 WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1