Switchable Perovskite Photovoltaic Sensors for Bioinspired Adaptive Machine Vision

Qilai Chen, Ying Zhang, Shuzhi Liu, Tingting Han, Xinhui Chen, Yanqing Xu, Ziqi Meng, Guanglei Zhang, Xuejun Zheng, Jinjin Zhao, G. Cao, Gang Liu
{"title":"Switchable Perovskite Photovoltaic Sensors for Bioinspired Adaptive Machine Vision","authors":"Qilai Chen, Ying Zhang, Shuzhi Liu, Tingting Han, Xinhui Chen, Yanqing Xu, Ziqi Meng, Guanglei Zhang, Xuejun Zheng, Jinjin Zhao, G. Cao, Gang Liu","doi":"10.1002/aisy.202000122","DOIUrl":null,"url":null,"abstract":"Machine vision is an indispensable part of today's artificial intelligence. The artificial visual systems used in industrial production and domestic daily life rely significantly on cameras and image‐processing components for live monitoring and target identifying. They, however, often suffer from bulky volume, high energy consumption, and more critically, lack of adaptive responsiveness under extreme lighting conditions and thus possible mortal visual disability of flash blinding or nyctalopia for applications such as auto‐piloting. Herein, it is demonstrated that perovskite switchable photovoltaic devices are used to effectively construct all‐in‐one sensory neural network. Arising from the spontaneous and electric field‐induced ion‐migration effect, the photoresponsivity of the perovskite device can be reconfigured over the wide range of 540–1270%, which not only allows high‐fidelity adaptive image sensing of the visual information but also acts as updatable synaptic weight to enable the sensor array for performing machine‐learning tasks. With the bioinspired electronic pupil regulation function achieved through adjustable photoresponsivity of the perovskite sensor array, a proof‐of‐concept adaptive machine vision system with a maximum 263% enhancement of the object recognition accuracy for compact, mobile yet delay‐sensitive applications is demonstrated.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Machine vision is an indispensable part of today's artificial intelligence. The artificial visual systems used in industrial production and domestic daily life rely significantly on cameras and image‐processing components for live monitoring and target identifying. They, however, often suffer from bulky volume, high energy consumption, and more critically, lack of adaptive responsiveness under extreme lighting conditions and thus possible mortal visual disability of flash blinding or nyctalopia for applications such as auto‐piloting. Herein, it is demonstrated that perovskite switchable photovoltaic devices are used to effectively construct all‐in‐one sensory neural network. Arising from the spontaneous and electric field‐induced ion‐migration effect, the photoresponsivity of the perovskite device can be reconfigured over the wide range of 540–1270%, which not only allows high‐fidelity adaptive image sensing of the visual information but also acts as updatable synaptic weight to enable the sensor array for performing machine‐learning tasks. With the bioinspired electronic pupil regulation function achieved through adjustable photoresponsivity of the perovskite sensor array, a proof‐of‐concept adaptive machine vision system with a maximum 263% enhancement of the object recognition accuracy for compact, mobile yet delay‐sensitive applications is demonstrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生物自适应机器视觉的可切换钙钛矿光伏传感器
机器视觉是当今人工智能不可缺少的一部分。工业生产和家庭日常生活中使用的人工视觉系统在很大程度上依赖于摄像机和图像处理组件来进行实时监控和目标识别。然而,它们往往体积庞大,能耗高,更关键的是,在极端照明条件下缺乏自适应反应,因此在自动驾驶等应用中可能出现闪光致盲或夜盲症的致命视觉障碍。本文证明了钙钛矿可切换光伏器件可以有效地构建全合一的感觉神经网络。由于自发和电场诱导的离子迁移效应,钙钛矿器件的光响应性可以在540-1270%的宽范围内重新配置,这不仅可以实现高保真的自适应图像感知视觉信息,而且还可以作为可更新的突触权重,使传感器阵列能够执行机器学习任务。通过钙钛矿传感器阵列的可调节光响应性,实现了生物启发的电子瞳孔调节功能,展示了一种概念验证的自适应机器视觉系统,该系统可将紧凑、移动但对延迟敏感的应用的物体识别精度提高263%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Tactile Synthetic Tissue: from Soft Robotics to Hybrid Surgical Simulators Maximizing the Synaptic Efficiency of Ferroelectric Tunnel Junction Devices Using a Switching Mechanism Hidden in an Identical Pulse Programming Learning Scheme Enhancing Sensitivity across Scales with Highly Sensitive Hall Effect‐Based Auxetic Tactile Sensors 3D Printed Swordfish‐Like Wireless Millirobot Widened Attention‐Enhanced Atrous Convolutional Network for Efficient Embedded Vision Applications under Resource Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1