Two-dimensional Heteroscedastic Linear Discriminant Analysis for Age-group Classification

K. Ueki, T. Hayashida, Tetsunori Kobayashi
{"title":"Two-dimensional Heteroscedastic Linear Discriminant Analysis for Age-group Classification","authors":"K. Ueki, T. Hayashida, Tetsunori Kobayashi","doi":"10.1109/ICPR.2006.1138","DOIUrl":null,"url":null,"abstract":"This paper presents a novel LDA algorithm named 2DHLDA (2-Dimensional Heteroscedastic Linear Discriminant Analysis). The proposed algorithms are applied on age-group classification using facial images under various lighting conditions. 2DHLDA significantly overcomes the singularity problem, so-called 'Small Sample Size' problem (S3 problem), and the original feature space is split into useful dimensions and nuisance dimensions to reduce the influence of different lighting conditions. A two-phased dimensional reduction step, namely 2DHLDA+LDA, is used in our experiment. Our experimental results show that the new 2DHLDA-based approach improves classification accuracy more than the conventional 1D and 2D-based approaches.","PeriodicalId":74516,"journal":{"name":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","volume":"31 1","pages":"585-588"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.1138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents a novel LDA algorithm named 2DHLDA (2-Dimensional Heteroscedastic Linear Discriminant Analysis). The proposed algorithms are applied on age-group classification using facial images under various lighting conditions. 2DHLDA significantly overcomes the singularity problem, so-called 'Small Sample Size' problem (S3 problem), and the original feature space is split into useful dimensions and nuisance dimensions to reduce the influence of different lighting conditions. A two-phased dimensional reduction step, namely 2DHLDA+LDA, is used in our experiment. Our experimental results show that the new 2DHLDA-based approach improves classification accuracy more than the conventional 1D and 2D-based approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
年龄组分类的二维异方差线性判别分析
本文提出了一种新的LDA算法2DHLDA (2-Dimensional heteroscadastic Linear Discriminant Analysis)。将该算法应用于不同光照条件下人脸图像的年龄分类。2DHLDA显著克服了奇异性问题,即所谓的“小样本大小”问题(S3问题),并将原始特征空间分割为有用维度和讨厌维度,以减少不同光照条件的影响。我们的实验采用两阶段降维步骤,即2DHLDA+LDA。实验结果表明,与传统的1D和2d分类方法相比,基于2dhlda的分类方法提高了分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Complexity of Representations in Deep Learning Extraction of Ruler Markings For Estimating Physical Size of Oral Lesions. TensorMixup Data Augmentation Method for Fully Automatic Brain Tumor Segmentation Classifying Breast Histopathology Images with a Ductal Instance-Oriented Pipeline. Directionally Paired Principal Component Analysis for Bivariate Estimation Problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1