{"title":"Caldecrin: A pancreas-derived hypocalcemic factor, regulates osteoclast formation and function.","authors":"M. Tomomura, A. Tomomura","doi":"10.4331/wjbc.v6.i4.358","DOIUrl":null,"url":null,"abstract":"Caldecrin was originally isolated from the pancreas as a factor that reduced serum calcium levels. This secreted serine protease has chymotrypsin-like activity and is also known as chymotrypsin C; it belongs to the elastase family. Although intravenous administration of caldecrin decreases the serum calcium concentration even when its protease activity is blocked, this effect does require cleavage of caldecrin's pro-peptide by trypsin, converting it to the mature enzyme. Ectopic intramuscular expression of caldecrin prevented bone resorption in ovariectomized mice. Caldecrin inhibited parathyroid hormone-stimulated calcium release from fetal mouse long bone organ cultures. Furthermore, caldecrin suppressed the formation of osteoclasts from bone marrow cells by inhibiting the receptor activator of nuclear factor-κ B ligand (RANKL)-stimulated phospholipase Cγ-calcium oscillation-calcineurin-nuclear factor of activated T-cells, cytoplasmic 1 pathway. Caldecrin also suppressed the bone resorption activity of mature osteoclasts by preventing RANKL-stimulated Src activation, calcium entry, and actin ring formation. In vivo and in vitro studies have indicated that caldecrin is a unique multifunctional protease with anti-osteoclastogenic activities that are distinct from its protease activity. Caldecrin might be a potential therapeutic target for the treatment of osteolytic diseases such as osteoporosis and osteoarthritis. This mini-review describes caldecrin's historical background and its mechanisms of action.","PeriodicalId":23691,"journal":{"name":"World journal of biological chemistry","volume":"1 1","pages":"358-65"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of biological chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4331/wjbc.v6.i4.358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Caldecrin was originally isolated from the pancreas as a factor that reduced serum calcium levels. This secreted serine protease has chymotrypsin-like activity and is also known as chymotrypsin C; it belongs to the elastase family. Although intravenous administration of caldecrin decreases the serum calcium concentration even when its protease activity is blocked, this effect does require cleavage of caldecrin's pro-peptide by trypsin, converting it to the mature enzyme. Ectopic intramuscular expression of caldecrin prevented bone resorption in ovariectomized mice. Caldecrin inhibited parathyroid hormone-stimulated calcium release from fetal mouse long bone organ cultures. Furthermore, caldecrin suppressed the formation of osteoclasts from bone marrow cells by inhibiting the receptor activator of nuclear factor-κ B ligand (RANKL)-stimulated phospholipase Cγ-calcium oscillation-calcineurin-nuclear factor of activated T-cells, cytoplasmic 1 pathway. Caldecrin also suppressed the bone resorption activity of mature osteoclasts by preventing RANKL-stimulated Src activation, calcium entry, and actin ring formation. In vivo and in vitro studies have indicated that caldecrin is a unique multifunctional protease with anti-osteoclastogenic activities that are distinct from its protease activity. Caldecrin might be a potential therapeutic target for the treatment of osteolytic diseases such as osteoporosis and osteoarthritis. This mini-review describes caldecrin's historical background and its mechanisms of action.