Subhajit Das, Dylan Cashman, Remco Chang, A. Endert
{"title":"Gaggle: Visual Analytics for Model Space Navigation","authors":"Subhajit Das, Dylan Cashman, Remco Chang, A. Endert","doi":"10.20380/GI2020.15","DOIUrl":null,"url":null,"abstract":"Recent visual analytics systems make use of multiple machine learning models to better fit the data as opposed to traditional single, pre-defined model systems. However, while multi-model visual analytic systems can be effective, their added complexity poses usability concerns, as users are required to interact with the parameters of multiple models. Further, the advent of various model algorithms and associated hyperparameters creates an exhaustive model space to sample models from. This poses complexity to navigate this model space to find the right model for the data and the task. In this paper, we present Gaggle, a multi-model visual analytic system that enables users to interactively navigate the model space. Further translating user interactions into inferences, Gaggle simplifies working with multiple models by automatically finding the best model from the high-dimensional model space to support various user tasks. Through a qualitative user study, we show how our approach helps users to find a best model for a classification and ranking task. The study results confirm that Gaggle is intuitive and easy to use, supporting interactive model space navigation and auPaste the appropriate copyright statement here. ACM now supports three different copyright statements: • ACM copyright: ACM holds the copyright on the work. This is the historical approach. • License: The author(s) retain copyright, but ACM receives an exclusive publication license. • Open Access: The author(s) wish to pay for the work to be open access. The additional fee must be paid to ACM. This text field is large enough to hold the appropriate release statement assuming it is","PeriodicalId":93493,"journal":{"name":"Proceedings. Graphics Interface (Conference)","volume":"1 1","pages":"137-147"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Graphics Interface (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20380/GI2020.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Recent visual analytics systems make use of multiple machine learning models to better fit the data as opposed to traditional single, pre-defined model systems. However, while multi-model visual analytic systems can be effective, their added complexity poses usability concerns, as users are required to interact with the parameters of multiple models. Further, the advent of various model algorithms and associated hyperparameters creates an exhaustive model space to sample models from. This poses complexity to navigate this model space to find the right model for the data and the task. In this paper, we present Gaggle, a multi-model visual analytic system that enables users to interactively navigate the model space. Further translating user interactions into inferences, Gaggle simplifies working with multiple models by automatically finding the best model from the high-dimensional model space to support various user tasks. Through a qualitative user study, we show how our approach helps users to find a best model for a classification and ranking task. The study results confirm that Gaggle is intuitive and easy to use, supporting interactive model space navigation and auPaste the appropriate copyright statement here. ACM now supports three different copyright statements: • ACM copyright: ACM holds the copyright on the work. This is the historical approach. • License: The author(s) retain copyright, but ACM receives an exclusive publication license. • Open Access: The author(s) wish to pay for the work to be open access. The additional fee must be paid to ACM. This text field is large enough to hold the appropriate release statement assuming it is