{"title":"Capillary control of collapse in soft composite columns","authors":"Marc Suñé, J. Wettlaufer","doi":"10.1103/PhysRevMaterials.5.055603","DOIUrl":null,"url":null,"abstract":"Euler buckling is the elastic instability of a column subjected to longitudinal compressing forces at its ends. The buckling instability occurs when the compressing load reaches a critical value and an infinitesimal deflection leads to a large amplitude deflection. Since Euler's original study, this process has been extensively studied in homogeneous, isotropic, linear-elastic solids. Here, we examine the nature of the buckling in inhomogeneous soft composite materials. In particular, we consider a soft host with liquid inclusions both large and small relative to the elastocapillarity length, which lead to softening and stiffening of a homogeneous composite respectively. However, by imposing a gradient of the volume fraction or varying the inclusion size we can deliberately manipulate the nature of Euler buckling.","PeriodicalId":8472,"journal":{"name":"arXiv: Soft Condensed Matter","volume":"40 12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Soft Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevMaterials.5.055603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Euler buckling is the elastic instability of a column subjected to longitudinal compressing forces at its ends. The buckling instability occurs when the compressing load reaches a critical value and an infinitesimal deflection leads to a large amplitude deflection. Since Euler's original study, this process has been extensively studied in homogeneous, isotropic, linear-elastic solids. Here, we examine the nature of the buckling in inhomogeneous soft composite materials. In particular, we consider a soft host with liquid inclusions both large and small relative to the elastocapillarity length, which lead to softening and stiffening of a homogeneous composite respectively. However, by imposing a gradient of the volume fraction or varying the inclusion size we can deliberately manipulate the nature of Euler buckling.