Predicting Proppian Narrative Functions from Stories in Natural Language

Josep Valls-Vargas, Jichen Zhu, Santiago Ontañón
{"title":"Predicting Proppian Narrative Functions from Stories in Natural Language","authors":"Josep Valls-Vargas, Jichen Zhu, Santiago Ontañón","doi":"10.1609/aiide.v12i1.12855","DOIUrl":null,"url":null,"abstract":"\n \n Computational narrative systems usually require knowledge about the story world and narrative theory to be encoded in some form of structured knowledge representation formalism, a notoriously time-consuming task requiring expertise in both storytelling and knowledge engineering. In this paper we present an approach that combines supervised machine learning with narrative domain knowledge toward automatically extracting such knowledge from natural language stories, focusing specifically on predicting Proppian narrative functions. Our experiments on a dataset of Russian fairy tales show that our system outperforms an informed baseline and that combining top-down narrative theory and bottom-up statistical models inferred from an annotated dataset increases prediction accuracy with respect to using them in isolation.\n \n","PeriodicalId":92576,"journal":{"name":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","volume":"59 1","pages":"107-113"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v12i1.12855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Computational narrative systems usually require knowledge about the story world and narrative theory to be encoded in some form of structured knowledge representation formalism, a notoriously time-consuming task requiring expertise in both storytelling and knowledge engineering. In this paper we present an approach that combines supervised machine learning with narrative domain knowledge toward automatically extracting such knowledge from natural language stories, focusing specifically on predicting Proppian narrative functions. Our experiments on a dataset of Russian fairy tales show that our system outperforms an informed baseline and that combining top-down narrative theory and bottom-up statistical models inferred from an annotated dataset increases prediction accuracy with respect to using them in isolation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从自然语言中预测故事的叙事功能
计算叙事系统通常需要关于故事世界和叙事理论的知识以某种形式的结构化知识表示形式进行编码,这是一项众所周知的耗时任务,需要讲故事和知识工程方面的专业知识。在本文中,我们提出了一种将监督机器学习与叙事领域知识相结合的方法,以从自然语言故事中自动提取这些知识,特别关注于预测Proppian叙事功能。我们在俄罗斯童话数据集上的实验表明,我们的系统优于知情基线,并且结合自上而下的叙事理论和自下而上的统计模型,从注释数据集推断,相对于单独使用它们,提高了预测准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HeadSpace: Incorporating Action Failure and Character Beliefs into Narrative Planning A Hybrid Approach to Co-creative Story Authoring Using Grammars and Language Models Reasoning with Ontologies for Non-player Character's Decision-Making in Games On the Challenges of Generating Pixel Art Character Sprites Using GANs Loose Ends: A Mixed-Initiative Creative Interface for Playful Storytelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1