Automated Fine Tuning of Probabilistic Self-Stabilizing Algorithms

Saba Aflaki, Matthias Volk, Borzoo Bonakdarpour, J. Katoen, A. Storjohann
{"title":"Automated Fine Tuning of Probabilistic Self-Stabilizing Algorithms","authors":"Saba Aflaki, Matthias Volk, Borzoo Bonakdarpour, J. Katoen, A. Storjohann","doi":"10.1109/SRDS.2017.22","DOIUrl":null,"url":null,"abstract":"Although randomized algorithms have widely been used in distributed computing as a means to tackle impossibility results, it is currently unclear what type of randomization leads to the best performance in such algorithms. This paper proposes three automated techniques to find the probability distribution that achieves minimum average recovery time for an input randomized distributed self-stabilizing protocol without changing the behavior of the algorithm. Our first technique is based on solving symbolic linear algebraic equations in order to identify fastest state reachability in parametric discrete-time Markov chains. The second approach applies parameter synthesis techniques from probabilistic model checking to compute the rational function describing the average recovery time and then uses dedicated solvers to find the optimal parameter valuation. The third approach computes over- and under-approximations of the result for a given parameter region and iteratively refines the regions with minimal recovery time up to the desired precision. The latter approach finds sub-optimal solutions with negligible errors, but it is significantly more scalable in orders of magnitude as compared to the other approaches.","PeriodicalId":6475,"journal":{"name":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","volume":"19 4 1","pages":"94-103"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2017.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Although randomized algorithms have widely been used in distributed computing as a means to tackle impossibility results, it is currently unclear what type of randomization leads to the best performance in such algorithms. This paper proposes three automated techniques to find the probability distribution that achieves minimum average recovery time for an input randomized distributed self-stabilizing protocol without changing the behavior of the algorithm. Our first technique is based on solving symbolic linear algebraic equations in order to identify fastest state reachability in parametric discrete-time Markov chains. The second approach applies parameter synthesis techniques from probabilistic model checking to compute the rational function describing the average recovery time and then uses dedicated solvers to find the optimal parameter valuation. The third approach computes over- and under-approximations of the result for a given parameter region and iteratively refines the regions with minimal recovery time up to the desired precision. The latter approach finds sub-optimal solutions with negligible errors, but it is significantly more scalable in orders of magnitude as compared to the other approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概率自稳定算法的自动微调
尽管随机算法已经广泛地应用于分布式计算中,作为处理不可能结果的一种手段,但目前尚不清楚哪种类型的随机化会导致这种算法的最佳性能。本文提出了三种自动化技术,在不改变算法行为的情况下,为输入随机分布自稳定协议找到实现最小平均恢复时间的概率分布。我们的第一种技术是基于求解符号线性代数方程,以确定参数离散马尔可夫链中最快的状态可达性。第二种方法采用概率模型检验的参数综合技术,计算描述平均恢复时间的有理函数,然后使用专用求解器求出最优参数值。第三种方法计算给定参数区域的结果的过近似值和欠近似值,并以最小的恢复时间迭代地细化区域,达到所需的精度。后一种方法可以找到次优的解决方案,误差可以忽略不计,但与其他方法相比,它的可伸缩性明显更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PULP: Achieving Privacy and Utility Trade-Off in User Mobility Data On Availability for Blockchain-Based Systems Runtime Measurement Architecture for Bytecode Integrity in JVM-Based Cloud Performance Modeling of PBFT Consensus Process for Permissioned Blockchain Network (Hyperledger Fabric) CausalSpartan: Causal Consistency for Distributed Data Stores Using Hybrid Logical Clocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1