{"title":"Recommender System (RS): Challenges, Issues & Extensions","authors":"Dheeraj Kumar Sahni","doi":"10.12723/mjs.60.6","DOIUrl":null,"url":null,"abstract":"Recommendations are long chains followed from traditional life to today’s life. In everyday life, the chain of recommendation augments the social process via some physical media and digital applications. The issues and challenges of recommendation are still in the infancy due to the growth of technology. This article identifies the uncovered areas of concern and links them to novel solutions. We also provide an extensive literature with different dimension for the newbie to work with the subject. We observed the study with different taxonomy provided by the prevalent researcher of the recommender system. This article gives the remedial solution of the recommendation problems","PeriodicalId":18050,"journal":{"name":"Mapana Journal of Sciences","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mapana Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12723/mjs.60.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recommendations are long chains followed from traditional life to today’s life. In everyday life, the chain of recommendation augments the social process via some physical media and digital applications. The issues and challenges of recommendation are still in the infancy due to the growth of technology. This article identifies the uncovered areas of concern and links them to novel solutions. We also provide an extensive literature with different dimension for the newbie to work with the subject. We observed the study with different taxonomy provided by the prevalent researcher of the recommender system. This article gives the remedial solution of the recommendation problems