Research of discovery feature sub-space model (DFSSM) based on complex type data

Bingru Yang, Jing Tang
{"title":"Research of discovery feature sub-space model (DFSSM) based on complex type data","authors":"Bingru Yang, Jing Tang","doi":"10.1109/ICMLC.2002.1176751","DOIUrl":null,"url":null,"abstract":"Discusses the macroscopic and some other important problems in the field of KDD. First, it is very difficult to describe the complex type data by a general knowledge representation method. So we use the pattern which is defined as the vector in Hilbert space to represent the characteristic of complex type data. It also can be used to describe the rule of knowledge discovery. Secondly, we construct the general structure model based on complex type data-DFSSM (discovery feature sub-space model) followed by research on the inner mechanism of a knowledge discovery system. Finally, we prove the practicability and validity of this general structure model i.e. DFSSM, which can guide the knowledge discovery of textual data and image data (meteorologic nephogram data).","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"65 1","pages":"256-260 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1176751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Discusses the macroscopic and some other important problems in the field of KDD. First, it is very difficult to describe the complex type data by a general knowledge representation method. So we use the pattern which is defined as the vector in Hilbert space to represent the characteristic of complex type data. It also can be used to describe the rule of knowledge discovery. Secondly, we construct the general structure model based on complex type data-DFSSM (discovery feature sub-space model) followed by research on the inner mechanism of a knowledge discovery system. Finally, we prove the practicability and validity of this general structure model i.e. DFSSM, which can guide the knowledge discovery of textual data and image data (meteorologic nephogram data).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于复杂类型数据的发现特征子空间模型研究
讨论了KDD领域的宏观问题和其他一些重要问题。首先,用一般的知识表示方法来描述复杂类型数据是非常困难的。因此,我们使用希尔伯特空间中定义为向量的模式来表示复型数据的特征。它也可以用来描述知识发现的规则。其次,构建了基于复杂类型数据的通用结构模型dfssm(发现特征子空间模型),研究了知识发现系统的内部机制。最后,验证了该通用结构模型DFSSM的实用性和有效性,可以指导文本数据和图像数据(气象云图数据)的知识发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary Talk: Digital-Twin Fluid Engineering APPLYING MACHINE LEARNING TECHNIQUES IN DETECTING BACTERIAL VAGINOSIS. OPTICAL COHERENCE TOMOGRAPHY HEART TUBE IMAGE DENOISING BASED ON CONTOURLET TRANSFORM. The multistage support vector machine Anti-control of chaos based on fuzzy neural networks inverse system method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1