Kinecting the dots: Particle based scene flow from depth sensors

Simon Hadfield, R. Bowden
{"title":"Kinecting the dots: Particle based scene flow from depth sensors","authors":"Simon Hadfield, R. Bowden","doi":"10.1109/ICCV.2011.6126509","DOIUrl":null,"url":null,"abstract":"The motion field of a scene can be used for object segmentation and to provide features for classification tasks like action recognition. Scene flow is the full 3D motion field of the scene, and is more difficult to estimate than it's 2D counterpart, optical flow. Current approaches use a smoothness cost for regularisation, which tends to over-smooth at object boundaries. This paper presents a novel formulation for scene flow estimation, a collection of moving points in 3D space, modelled using a particle filter that supports multiple hypotheses and does not oversmooth the motion field. In addition, this paper is the first to address scene flow estimation, while making use of modern depth sensors and monocular appearance images, rather than traditional multi-viewpoint rigs. The algorithm is applied to an existing scene flow dataset, where it achieves comparable results to approaches utilising multiple views, while taking a fraction of the time.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"24 1","pages":"2290-2295"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

Abstract

The motion field of a scene can be used for object segmentation and to provide features for classification tasks like action recognition. Scene flow is the full 3D motion field of the scene, and is more difficult to estimate than it's 2D counterpart, optical flow. Current approaches use a smoothness cost for regularisation, which tends to over-smooth at object boundaries. This paper presents a novel formulation for scene flow estimation, a collection of moving points in 3D space, modelled using a particle filter that supports multiple hypotheses and does not oversmooth the motion field. In addition, this paper is the first to address scene flow estimation, while making use of modern depth sensors and monocular appearance images, rather than traditional multi-viewpoint rigs. The algorithm is applied to an existing scene flow dataset, where it achieves comparable results to approaches utilising multiple views, while taking a fraction of the time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连接点:基于深度传感器的粒子场景流
场景的运动场可用于对象分割,并为动作识别等分类任务提供特征。场景流是场景的全3D运动场,比2D光流更难估计。当前的方法使用平滑代价进行正则化,这往往在对象边界处过于平滑。本文提出了一种场景流估计的新公式,即3D空间中移动点的集合,使用支持多个假设且不会过度平滑运动场的粒子滤波器建模。此外,本文首次解决了场景流估计问题,同时利用现代深度传感器和单目外观图像,而不是传统的多视点平台。该算法应用于现有的场景流数据集,在那里它实现了与使用多个视图的方法相当的结果,同时花费了一小部分时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust and efficient parametric face alignment Video parsing for abnormality detection From learning models of natural image patches to whole image restoration Discriminative figure-centric models for joint action localization and recognition A general preconditioning scheme for difference measures in deformable registration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1