A study on the statistical comparison methods for engineering applications

X. Ji, S. Kang, Yanran Yu, W. Chien
{"title":"A study on the statistical comparison methods for engineering applications","authors":"X. Ji, S. Kang, Yanran Yu, W. Chien","doi":"10.1109/IEEM.2013.6962477","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a data comparison method, Matching Rule (MR). By setting up a relation between MR and F/T, an empirical criterion of MR for comparing two groups of data is defined. It is based on a study on the classical statistic method “Hypothesis test - F/T”. The F/T test is widely used to compare variations & means of two normal populations. However, the empirical criteria of MR do not consider type I error. To make MR truly useful, we develop a program to simulate the sample size needed for the two groups at different levels of type I error. Then MR criteria and the minimal sample size can be determined based on the required type I error. Our simulation results show that the type I error of MR can approach to the traditional F/T test method when sample size is close to 30. With a large sampling size, MR tool is more useful for engineering application than statistical comparison test [1].","PeriodicalId":6454,"journal":{"name":"2013 IEEE International Conference on Industrial Engineering and Engineering Management","volume":"19 1","pages":"576-580"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Industrial Engineering and Engineering Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM.2013.6962477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we introduce a data comparison method, Matching Rule (MR). By setting up a relation between MR and F/T, an empirical criterion of MR for comparing two groups of data is defined. It is based on a study on the classical statistic method “Hypothesis test - F/T”. The F/T test is widely used to compare variations & means of two normal populations. However, the empirical criteria of MR do not consider type I error. To make MR truly useful, we develop a program to simulate the sample size needed for the two groups at different levels of type I error. Then MR criteria and the minimal sample size can be determined based on the required type I error. Our simulation results show that the type I error of MR can approach to the traditional F/T test method when sample size is close to 30. With a large sampling size, MR tool is more useful for engineering application than statistical comparison test [1].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工程应用的统计比较方法研究
本文介绍了一种数据比较方法——匹配规则(MR)。通过建立MR与F/T之间的关系,定义了MR比较两组数据的经验准则。它是在对经典统计方法“假设检验- F/T”的研究基础上建立起来的。F/T检验被广泛用于比较两个正态总体的变异和均值。然而,MR的经验标准不考虑I型误差。为了使MR真正有用,我们开发了一个程序来模拟两组在不同程度的I型误差下所需的样本量。然后MR标准和最小样本量可以根据所需的I型误差确定。仿真结果表明,当样本量接近30时,MR的I型误差可以接近传统的F/T测试方法。MR工具具有较大的样本量,比统计比较测试[1]更适用于工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extension of the PROMETHEE Method to the Multicriteria Dual Clustering Problem On the Necessity for Improving Effectiveness of Qualification Process for Spare Parts Additive Manufacturing in a Circular Economy Supply Chain Selecting Temporary Flood Shelter Locations by P-Center Model A Feasible Schema Design Strategy for Amazon DynamoDB: A Nested Normal Form Approach Flood Shelters Location Using P-median Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1