Biochar modification and application to improve soil fertility and crop productivity

K. Ghassemi-Golezani, S. Rahimzadeh
{"title":"Biochar modification and application to improve soil fertility and crop productivity","authors":"K. Ghassemi-Golezani, S. Rahimzadeh","doi":"10.2478/agri-2022-0005","DOIUrl":null,"url":null,"abstract":"Abstract Biochar as an eco-friendly and low-cost product has the potential for modification to improve its functionality. The application of modified biochar is a new approach that can improve soil properties, quality, and productivity of plants, thereby helping sustainable agriculture. The focus of the recent studies has dealt with methods for improving the function of biochar. Biochar can be modified to enhance its physicochemical properties (such as bulk density, cation exchange capacity, specific surface area, and porosity) and nutritional value. This review provides crucial and summarizing information about the classification of biochar modification techniques for agricultural application and a comparison of pristine and modified biochar function on soil fertility and plant production. There are several approaches for modification of biochar, which can be divided into four main categories: chemical, physical, enriched with minerals, and nanocomposites. The modified biochar could be more appropriate for poor-nutrient soils and has a high adsorption capacity and potential for different pollutants immobilization. Further research is needed to determine the best methods of biochar modification with short-term and long-term effects on soil fertility and plant growth under different environmental conditions.","PeriodicalId":7527,"journal":{"name":"Agriculture (Pol'nohospodárstvo)","volume":"38 1","pages":"45 - 61"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture (Pol'nohospodárstvo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/agri-2022-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract Biochar as an eco-friendly and low-cost product has the potential for modification to improve its functionality. The application of modified biochar is a new approach that can improve soil properties, quality, and productivity of plants, thereby helping sustainable agriculture. The focus of the recent studies has dealt with methods for improving the function of biochar. Biochar can be modified to enhance its physicochemical properties (such as bulk density, cation exchange capacity, specific surface area, and porosity) and nutritional value. This review provides crucial and summarizing information about the classification of biochar modification techniques for agricultural application and a comparison of pristine and modified biochar function on soil fertility and plant production. There are several approaches for modification of biochar, which can be divided into four main categories: chemical, physical, enriched with minerals, and nanocomposites. The modified biochar could be more appropriate for poor-nutrient soils and has a high adsorption capacity and potential for different pollutants immobilization. Further research is needed to determine the best methods of biochar modification with short-term and long-term effects on soil fertility and plant growth under different environmental conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物炭改性及其应用提高土壤肥力和作物生产力
生物炭作为一种生态友好、低成本的产品,具有改进其功能的潜力。改性生物炭的应用是一种新的方法,可以改善土壤的性质、质量和植物的生产力,从而有助于可持续农业。近年来研究的重点是如何提高生物炭的功能。可以对生物炭进行改性,以提高其物理化学性质(如体积密度、阳离子交换容量、比表面积和孔隙度)和营养价值。本文综述了用于农业应用的生物炭改性技术的分类,并比较了原始生物炭和改性生物炭对土壤肥力和植物生产的作用。生物炭的改性有几种方法,可分为四大类:化学、物理、富含矿物质和纳米复合材料。改性后的生物炭更适合于贫瘠土壤,具有较高的吸附能力和固定化不同污染物的潜力。在不同环境条件下,对土壤肥力和植物生长有短期和长期影响的生物炭改性方法有待进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A case study – The occurrence of pests in stands of newly introduced energy crops in large-scale pilot experiments in conditions of Central Europe Performance and Yield Stability of Quality Protein Maize (Zea mays L.) Hybrids under Rainfed Condition Superabsorbent polymer and its effect on maize germination, emergence and genetic diversity of rhizosphere microorganisms Genotype Variation of Polyphenol Content and Antioxidant Activity of Artemisia balchanorum Krasch. × Artemisia taurica Willd Nitrogen release dynamics and carbon sequestration by legume and non-legume cover crops under pure and mixed planting conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1