P. Kummamuru, G. M. Calv'es, G. Cimò, S. Pogrebenko, T. M. Bocanegra-Baham'on, D. Duev, M. Said, J. Edwards, M. Ma, J. Quick, A. Neidhardt, P. Vicente, R. Haas, J. Kallunki, 1. G. Maccaferri, G. Colucci, W. J. Yang, L. Hao, S. Weston, M. Kharinov, A. Mikhailov, T. Jung
{"title":"A monitoring campaign (2013–2020) of ESA’s Mars Express to study interplanetary plasma scintillation","authors":"P. Kummamuru, G. M. Calv'es, G. Cimò, S. Pogrebenko, T. M. Bocanegra-Baham'on, D. Duev, M. Said, J. Edwards, M. Ma, J. Quick, A. Neidhardt, P. Vicente, R. Haas, J. Kallunki, 1. G. Maccaferri, G. Colucci, W. J. Yang, L. Hao, S. Weston, M. Kharinov, A. Mikhailov, T. Jung","doi":"10.1017/pasa.2023.12","DOIUrl":null,"url":null,"abstract":"Abstract The radio signal transmitted by the Mars Express (MEX) spacecraft was observed regularly between the years 2013–2020 at X-band (8.42 GHz) using the European Very Long Baseline Interferometry (EVN) network and University of Tasmania’s telescopes. We present a method to describe the solar wind parameters by quantifying the effects of plasma on our radio signal. In doing so, we identify all the uncompensated effects on the radio signal and see which coronal processes drive them. From a technical standpoint, quantifying the effect of the plasma on the radio signal helps phase referencing for precision spacecraft tracking. The phase fluctuation of the signal was determined for Mars’ orbit for solar elongation angles from 0 to 180 deg. The calculated phase residuals allow determination of the phase power spectrum. The total electron content of the solar plasma along the line of sight is calculated by removing effects from mechanical and ionospheric noises. The spectral index was determined as \n$-2.43 \\pm 0.11$\n which is in agreement with Kolmogorov’s turbulence. The theoretical models are consistent with observations at lower solar elongations however at higher solar elongation ( \n$>$\n 160 deg) we see the observed values to be higher. This can be caused when the uplink and downlink signals are positively correlated as a result of passing through identical plasma sheets.","PeriodicalId":20753,"journal":{"name":"Publications of the Astronomical Society of Australia","volume":"26 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of Australia","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/pasa.2023.12","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The radio signal transmitted by the Mars Express (MEX) spacecraft was observed regularly between the years 2013–2020 at X-band (8.42 GHz) using the European Very Long Baseline Interferometry (EVN) network and University of Tasmania’s telescopes. We present a method to describe the solar wind parameters by quantifying the effects of plasma on our radio signal. In doing so, we identify all the uncompensated effects on the radio signal and see which coronal processes drive them. From a technical standpoint, quantifying the effect of the plasma on the radio signal helps phase referencing for precision spacecraft tracking. The phase fluctuation of the signal was determined for Mars’ orbit for solar elongation angles from 0 to 180 deg. The calculated phase residuals allow determination of the phase power spectrum. The total electron content of the solar plasma along the line of sight is calculated by removing effects from mechanical and ionospheric noises. The spectral index was determined as
$-2.43 \pm 0.11$
which is in agreement with Kolmogorov’s turbulence. The theoretical models are consistent with observations at lower solar elongations however at higher solar elongation (
$>$
160 deg) we see the observed values to be higher. This can be caused when the uplink and downlink signals are positively correlated as a result of passing through identical plasma sheets.
期刊介绍:
Publications of the Astronomical Society of Australia (PASA) publishes new and significant research in astronomy and astrophysics. PASA covers a wide range of topics within astronomy, including multi-wavelength observations, theoretical modelling, computational astronomy and visualisation. PASA also maintains its heritage of publishing results on southern hemisphere astronomy and on astronomy with Australian facilities.
PASA publishes research papers, review papers and special series on topical issues, making use of expert international reviewers and an experienced Editorial Board. As an electronic-only journal, PASA publishes paper by paper, ensuring a rapid publication rate. There are no page charges. PASA''s Editorial Board approve a certain number of papers per year to be published Open Access without a publication fee.