Learned Contextual Feature Reweighting for Image Geo-Localization

Hyo Jin Kim, Enrique Dunn, Jan-Michael Frahm
{"title":"Learned Contextual Feature Reweighting for Image Geo-Localization","authors":"Hyo Jin Kim, Enrique Dunn, Jan-Michael Frahm","doi":"10.1109/CVPR.2017.346","DOIUrl":null,"url":null,"abstract":"We address the problem of large scale image geo-localization where the location of an image is estimated by identifying geo-tagged reference images depicting the same place. We propose a novel model for learning image representations that integrates context-aware feature reweighting in order to effectively focus on regions that positively contribute to geo-localization. In particular, we introduce a Contextual Reweighting Network (CRN) that predicts the importance of each region in the feature map based on the image context. Our model is learned end-to-end for the image geo-localization task, and requires no annotation other than image geo-tags for training. In experimental results, the proposed approach significantly outperforms the previous state-of-the-art on the standard geo-localization benchmark datasets. We also demonstrate that our CRN discovers task-relevant contexts without any additional supervision.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"64 2 1","pages":"3251-3260"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"167","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 167

Abstract

We address the problem of large scale image geo-localization where the location of an image is estimated by identifying geo-tagged reference images depicting the same place. We propose a novel model for learning image representations that integrates context-aware feature reweighting in order to effectively focus on regions that positively contribute to geo-localization. In particular, we introduce a Contextual Reweighting Network (CRN) that predicts the importance of each region in the feature map based on the image context. Our model is learned end-to-end for the image geo-localization task, and requires no annotation other than image geo-tags for training. In experimental results, the proposed approach significantly outperforms the previous state-of-the-art on the standard geo-localization benchmark datasets. We also demonstrate that our CRN discovers task-relevant contexts without any additional supervision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像地理定位的学习上下文特征重加权
我们解决了大规模图像地理定位的问题,其中通过识别描绘同一地点的地理标记参考图像来估计图像的位置。我们提出了一种新的图像表征学习模型,该模型集成了上下文感知特征重加权,以便有效地关注对地理定位有积极贡献的区域。特别是,我们引入了上下文重加权网络(CRN),该网络基于图像上下文预测特征映射中每个区域的重要性。对于图像地理定位任务,我们的模型是端到端学习的,除了图像地理标记外,不需要任何注释进行训练。实验结果表明,该方法在标准地理定位基准数据集上的性能明显优于现有方法。我们还证明,我们的CRN可以在没有任何额外监督的情况下发现与任务相关的上下文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FFTLasso: Large-Scale LASSO in the Fourier Domain Semantically Coherent Co-Segmentation and Reconstruction of Dynamic Scenes Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces Joint Gap Detection and Inpainting of Line Drawings Wetness and Color from a Single Multispectral Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1