Evaluation of Thermophysical and Strength Properties of Composite Panels Produced from Sugarcane Bagasse and Waste Newspapers

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Advances in Materials Science Pub Date : 2023-03-01 DOI:10.2478/adms-2023-0002
S. Etuk, U. Robert, O. Agbasi, N. J. Inyang
{"title":"Evaluation of Thermophysical and Strength Properties of Composite Panels Produced from Sugarcane Bagasse and Waste Newspapers","authors":"S. Etuk, U. Robert, O. Agbasi, N. J. Inyang","doi":"10.2478/adms-2023-0002","DOIUrl":null,"url":null,"abstract":"Abstract Large quantities of waste newspapers and sugarcane bagasse are prevalently discarded by open burning or indiscriminate dumping, thereby posing severe danger to the environment and public health. This study sought to examine the feasibility of managing the wastes by recycling them into value-added products for building construction. Composite panels were fabricated using waste newspaper paste (WNP) with sugarcane bagasse particles (SBP) varied at 0, 25, 50, 75, and 100 % by weight of the composite mix. Epoxy resin was thoroughly mixed with its hardener and applied as binder. The samples were developed in triplicates per proportion of the SBP adopted and then dried completely before their thermophysical and strength properties were evaluated. It was observed that variations in mean values of water absorption (28.57 – 39.43 %), thickness swelling (6.21 - 8.33 %), specific heat capacity (1232 - 1312Jkg−1K−1) trended positively with increasing proportions of the SBP. Whereas nailability remained 100.0 % in all the cases, bulk density (689.4 - 640.5 kgm−3), thermal conductivity (0.1186 - 0.1163 Wm−1K−1), thermal diffusivity (1.396 - 1.384 x 10−7 m2s−1), and flexural strength (2.572 - 2.280 N/mm2) correlated inversely with the added fractions of the SBP. Generally, it was found that the samples could perform satisfactorily if applied as ceiling or partition elements in building design. Therefore, recycling of sugarcane bagasse and waste newspapers as described in this study could serve as a promising way of solving their disposal problems and also enhance achievement of low-cost and safe buildings.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/adms-2023-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Large quantities of waste newspapers and sugarcane bagasse are prevalently discarded by open burning or indiscriminate dumping, thereby posing severe danger to the environment and public health. This study sought to examine the feasibility of managing the wastes by recycling them into value-added products for building construction. Composite panels were fabricated using waste newspaper paste (WNP) with sugarcane bagasse particles (SBP) varied at 0, 25, 50, 75, and 100 % by weight of the composite mix. Epoxy resin was thoroughly mixed with its hardener and applied as binder. The samples were developed in triplicates per proportion of the SBP adopted and then dried completely before their thermophysical and strength properties were evaluated. It was observed that variations in mean values of water absorption (28.57 – 39.43 %), thickness swelling (6.21 - 8.33 %), specific heat capacity (1232 - 1312Jkg−1K−1) trended positively with increasing proportions of the SBP. Whereas nailability remained 100.0 % in all the cases, bulk density (689.4 - 640.5 kgm−3), thermal conductivity (0.1186 - 0.1163 Wm−1K−1), thermal diffusivity (1.396 - 1.384 x 10−7 m2s−1), and flexural strength (2.572 - 2.280 N/mm2) correlated inversely with the added fractions of the SBP. Generally, it was found that the samples could perform satisfactorily if applied as ceiling or partition elements in building design. Therefore, recycling of sugarcane bagasse and waste newspapers as described in this study could serve as a promising way of solving their disposal problems and also enhance achievement of low-cost and safe buildings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蔗渣和废报纸复合材料板的热物理性能和强度评价
大量的废报纸、废甘蔗渣普遍被露天焚烧或乱倾倒,对环境和公众健康造成严重危害。本研究旨在探讨通过将废物回收为建筑增值产品来管理废物的可行性。用废报纸糊(WNP)和蔗渣颗粒(SBP)在复合混合物的重量为0、25、50、75和100%时制备复合板。将环氧树脂与其硬化剂充分混合,作为粘结剂使用。样品按采用的SBP的比例分成三份,然后完全干燥,然后评估其热物理和强度特性。吸水率(28.57 ~ 39.43%)、厚度膨胀率(6.21 ~ 8.33%)、比热容(1232 ~ 1312Jkg−1K−1)随SBP比例的增加呈显著正相关。尽管在所有情况下,可用性保持在100.0%,但体积密度(689.4 - 640.5 kgm−3)、导热系数(0.1186 - 0.1163 Wm−1K−1)、热扩散系数(1.396 - 1.384 x 10−7 m2s−1)和抗折强度(2.572 - 2.280 N/mm2)与SBP添加组分呈负相关。一般情况下,这些样品作为顶棚或隔墙构件在建筑设计中都能取得满意的效果。因此,本研究中描述的蔗渣和废报纸的回收利用可以作为解决其处理问题的一种有希望的方法,也可以提高低成本和安全建筑的成就。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Materials Science
Advances in Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
自引率
7.70%
发文量
0
期刊最新文献
Mechanical Properties of Titanium Grade 1 After Laser Shock Wave Treatment Leading-Edge Polymer/Carbonaceous Nano-Reinforcement Nanocomposites—Opportunities for Space Sector The Effects of ArC Voltage and Shielding Gas Type on the Microstructure of Wire ArC Additively Manufactured 2209 Duplex Stainless Steel Mechanical and Corrosion Properties of Friction Stir Welded and Tungsten Inert Gas Welded Phosphor Bronze Numerical and Experimental Analysis of the Forging of a Bimetallic Crosshead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1