Semiconducting and scintillating glasses for x-ray detection

IF 0.3 4区 材料科学 Q4 MATERIALS SCIENCE, CERAMICS Glass Technology-European Journal of Glass Science and Technology Part a Pub Date : 2023-04-06 DOI:10.13036/17533546.64.2.04
B. Smith, J. Mucciaccio, T. Caplice, L. Wadle, L. McClanahan, L. G. Jacobsohn, U. Akgun
{"title":"Semiconducting and scintillating glasses for x-ray detection","authors":"B. Smith, J. Mucciaccio, T. Caplice, L. Wadle, L. McClanahan, L. G. Jacobsohn, U. Akgun","doi":"10.13036/17533546.64.2.04","DOIUrl":null,"url":null,"abstract":"X-ray detectors are commonly used for medical, crystallography and space physics applications. Most of the current x-ray detectors use cadmium zinc telluride (CZT) as the active medium. This report investigates high density semiconducting and scintillating glasses as potential alternatives to CZT. For the semiconducting glasses, samples composed of xCuO–((1−x)/2)PbO–((1−x)/2)V2O5 and xFeO–((1−x)/2)PbO–((1−x)/2)V2O5, for the scintillating glasses, samples composed of xGd2O3+yWO3+(1−x−y)2H3BO3, doped with 1–6% Eu3+ or Tb3+, were investigated in this study. The glass-making conditions, density, Raman spectroscopy analysis, photoluminescence excitation and emission spectra, as well as conductivity measurements performed on various samples, are reported. The interaction of x-rays with all the glass samples was simulated using GATE software, and their mass attenuation coefficients were calculated and compared with CZT.","PeriodicalId":55090,"journal":{"name":"Glass Technology-European Journal of Glass Science and Technology Part a","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass Technology-European Journal of Glass Science and Technology Part a","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.13036/17533546.64.2.04","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

X-ray detectors are commonly used for medical, crystallography and space physics applications. Most of the current x-ray detectors use cadmium zinc telluride (CZT) as the active medium. This report investigates high density semiconducting and scintillating glasses as potential alternatives to CZT. For the semiconducting glasses, samples composed of xCuO–((1−x)/2)PbO–((1−x)/2)V2O5 and xFeO–((1−x)/2)PbO–((1−x)/2)V2O5, for the scintillating glasses, samples composed of xGd2O3+yWO3+(1−x−y)2H3BO3, doped with 1–6% Eu3+ or Tb3+, were investigated in this study. The glass-making conditions, density, Raman spectroscopy analysis, photoluminescence excitation and emission spectra, as well as conductivity measurements performed on various samples, are reported. The interaction of x-rays with all the glass samples was simulated using GATE software, and their mass attenuation coefficients were calculated and compared with CZT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
x射线探测用半导体和闪烁玻璃
x射线探测器通常用于医学、晶体学和空间物理应用。目前的x射线探测器大多采用碲化镉锌(CZT)作为活性介质。本报告探讨了高密度半导体和闪烁玻璃作为CZT的潜在替代品。对于半导体玻璃,研究了xCuO -((1−x)/2)PbO -((1−x)/2)V2O5和xFeO -((1−x)/2)PbO -((1−x)/2)V2O5组成的样品,对于闪烁玻璃,研究了xGd2O3+yWO3+(1−x−y)2H3BO3组成的样品,掺杂1 - 6%的Eu3+或Tb3+。报道了玻璃的制造条件、密度、拉曼光谱分析、光致发光激发和发射光谱以及对各种样品的电导率测量。利用GATE软件模拟了x射线与所有玻璃样品的相互作用,计算了它们的质量衰减系数,并与CZT进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Journal of the Society of Glass Technology was published between 1917 and 1959. There were four or six issues per year depending on economic circumstances of the Society and the country. Each issue contains Proceedings, Transactions, Abstracts, News and Reviews, and Advertisements, all thesesections were numbered separately. The bound volumes collected these pages into separate sections, dropping the adverts. There is a list of Council members and Officers of the Society and earlier volumes also had lists of personal and company members. JSGT was divided into Part A Glass Technology and Part B Physics and Chemistry of Glasses in 1960.
期刊最新文献
The Impact of Artificial Intelligence on Chatbot Technology: A Study on the Current Advancements and Leading Innovations IOT Monitoring Systems in Fish Farming Case Study:” University of Rwanda Fish Farming and Research Station (Ur-FFRs)” Network Automation Characterisation and Performance of Nigerian Kaolin and Metakaolin in Geopolymer Synthesis Investigation of IR Reflective Coating for Plexiglas Canopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1