{"title":"Billions of Human Brains Immersed Within a Shared Geomagnetic Field: Quantitative Solutions and Implications for Future Adaptations","authors":"M. Persinger","doi":"10.2174/1874196701306010008","DOIUrl":null,"url":null,"abstract":"The implications for adaptation when billions of human cerebrums are considered weak conductors immersed within the same medium, the geomagnetic field, are examined. Quantitative solutions indicated that the intensity of the \"transcerebral\" field produced from all human brains within the geomagnetic field is the same order of magnitude as the values associated with cognitive processes and altered expressions of proteins within the individual brain. This convergence could meet one of the criteria for a holographic-like phenomenon. The transition from 6 to 8 billion brains would be associated with shared energies within individual cerebral space whose frequencies increase across the visible electromagnetic wavelength from infrared to ultraviolet. Magnetic diffusivity indicates all brains could be influenced within about 10 minutes. Implications for induced ubiquitous genetic changes, shared modifications in protein sequences associated with memory during dream sleep, and limitations upon the proliferation of the species are discussed.","PeriodicalId":22949,"journal":{"name":"The Open Biology Journal","volume":"24 1","pages":"8-13"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Biology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874196701306010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
The implications for adaptation when billions of human cerebrums are considered weak conductors immersed within the same medium, the geomagnetic field, are examined. Quantitative solutions indicated that the intensity of the "transcerebral" field produced from all human brains within the geomagnetic field is the same order of magnitude as the values associated with cognitive processes and altered expressions of proteins within the individual brain. This convergence could meet one of the criteria for a holographic-like phenomenon. The transition from 6 to 8 billion brains would be associated with shared energies within individual cerebral space whose frequencies increase across the visible electromagnetic wavelength from infrared to ultraviolet. Magnetic diffusivity indicates all brains could be influenced within about 10 minutes. Implications for induced ubiquitous genetic changes, shared modifications in protein sequences associated with memory during dream sleep, and limitations upon the proliferation of the species are discussed.