An efficient automatic clustering algorithm for probability density functions and its applications in surface material classification

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-08-07 DOI:10.1111/stan.12315
Thao Nguyen-Trang, Tai Vo-Van, Ha Che-Ngoc
{"title":"An efficient automatic clustering algorithm for probability density functions and its applications in surface material classification","authors":"Thao Nguyen-Trang, Tai Vo-Van, Ha Che-Ngoc","doi":"10.1111/stan.12315","DOIUrl":null,"url":null,"abstract":"Clustering is a technique used to partition a dataset into groups of similar elements. In addition to traditional clustering methods, clustering for probability density functions (CDF) has been studied to capture data uncertainty. In CDF, automatic clustering is a clever technique that can determine the number of clusters automatically. However, current automatic clustering algorithms update the new probability density function (pdf) fi(t) based on the weighted mean of all previous pdfs fj(t − 1), j = 1, 2, …, N, resulting in slow convergence. This paper proposes an efficient automatic clustering algorithm for pdfs. In the proposed approach, the update of fi(t) is based on the weighted mean of {f1(t), f2(t),…, fi − 1(t), fi(t − 1), fi+1(t − 1),…,fN(t − 1)}, where N is the number of pdfs and i = 1,2,…, N. This technique allows for the incorporation of recently updated pdfs, leading to faster convergence. This paper also pioneers the applications of certain CDF algorithms in the field of surface image recognition. The numerical examples demonstrate that the proposed method can result in a rapid convergence at some early iterations. It also outperforms other state‐of‐the‐art automatic clustering methods in terms of the Adjusted Rand Index (ARI) and the Normalized Mutual Information (NMI). Additionally, the proposed algorithm proves to be competitive when clustering material images contaminated by noise. These results highlight the applicability of the proposed method in the problem of surface image recognition.This article is protected by copyright. All rights reserved.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12315","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering is a technique used to partition a dataset into groups of similar elements. In addition to traditional clustering methods, clustering for probability density functions (CDF) has been studied to capture data uncertainty. In CDF, automatic clustering is a clever technique that can determine the number of clusters automatically. However, current automatic clustering algorithms update the new probability density function (pdf) fi(t) based on the weighted mean of all previous pdfs fj(t − 1), j = 1, 2, …, N, resulting in slow convergence. This paper proposes an efficient automatic clustering algorithm for pdfs. In the proposed approach, the update of fi(t) is based on the weighted mean of {f1(t), f2(t),…, fi − 1(t), fi(t − 1), fi+1(t − 1),…,fN(t − 1)}, where N is the number of pdfs and i = 1,2,…, N. This technique allows for the incorporation of recently updated pdfs, leading to faster convergence. This paper also pioneers the applications of certain CDF algorithms in the field of surface image recognition. The numerical examples demonstrate that the proposed method can result in a rapid convergence at some early iterations. It also outperforms other state‐of‐the‐art automatic clustering methods in terms of the Adjusted Rand Index (ARI) and the Normalized Mutual Information (NMI). Additionally, the proposed algorithm proves to be competitive when clustering material images contaminated by noise. These results highlight the applicability of the proposed method in the problem of surface image recognition.This article is protected by copyright. All rights reserved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种高效的概率密度函数自动聚类算法及其在表面材料分类中的应用
聚类是一种用于将数据集划分为相似元素组的技术。除了传统的聚类方法外,人们还研究了概率密度函数聚类来捕捉数据的不确定性。在CDF中,自动聚类是一种聪明的技术,它可以自动确定集群的数量。然而,目前的自动聚类算法基于之前所有pdf函数fj(t−1),j = 1,2,…,N的加权平均值来更新新的概率密度函数(pdf) fi(t),导致收敛缓慢。提出了一种高效的pdf文件自动聚类算法。在提出的方法中,fi(t)的更新基于{f1(t), f2(t),…,fi−1(t), fi(t−1),fi+1(t−1),…,fN(t−1)}的加权平均值,其中N是pdf的数量,i = 1,2,…,N。这种技术允许合并最近更新的pdf,从而加快收敛速度。本文还介绍了某些CDF算法在表面图像识别领域的应用。数值算例表明,该方法在早期迭代时具有较快的收敛速度。在调整兰德指数(ARI)和标准化互信息(NMI)方面,它也优于其他最先进的自动聚类方法。此外,该算法在被噪声污染的材料图像聚类时具有一定的竞争力。这些结果突出了该方法在表面图像识别问题中的适用性。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1