Measuring Fairness in an Unfair World

J. Herington
{"title":"Measuring Fairness in an Unfair World","authors":"J. Herington","doi":"10.1145/3375627.3375854","DOIUrl":null,"url":null,"abstract":"Computer scientists have made great strides in characterizing different measures of algorithmic fairness, and showing that certain measures of fairness cannot be jointly satisfied. In this paper, I argue that the three most popular families of measures - unconditional independence, target-conditional independence and classification-conditional independence - make assumptions that are unsustainable in the context of an unjust world. I begin by introducing the measures and the implicit idealizations they make about the underlying causal structure of the contexts in which they are deployed. I then discuss how these idealizations fall apart in the context of historical injustice, ongoing unmodeled oppression, and the permissibility of using sensitive attributes to rectify injustice. In the final section, I suggest an alternative framework for measuring fairness in the context of existing injustice: distributive fairness.","PeriodicalId":93612,"journal":{"name":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375627.3375854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Computer scientists have made great strides in characterizing different measures of algorithmic fairness, and showing that certain measures of fairness cannot be jointly satisfied. In this paper, I argue that the three most popular families of measures - unconditional independence, target-conditional independence and classification-conditional independence - make assumptions that are unsustainable in the context of an unjust world. I begin by introducing the measures and the implicit idealizations they make about the underlying causal structure of the contexts in which they are deployed. I then discuss how these idealizations fall apart in the context of historical injustice, ongoing unmodeled oppression, and the permissibility of using sensitive attributes to rectify injustice. In the final section, I suggest an alternative framework for measuring fairness in the context of existing injustice: distributive fairness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在一个不公平的世界中衡量公平
计算机科学家在描述算法公平性的不同度量方面取得了巨大的进步,并表明某些度量的公平性不能被共同满足。在本文中,我认为三种最流行的衡量标准——无条件独立性、目标-条件独立性和分类-条件独立性——在不公正的世界背景下做出的假设是不可持续的。首先,我将介绍这些衡量标准以及它们对所处环境的潜在因果结构所做的隐性理想化。然后,我讨论了这些理想化是如何在历史上的不公正、持续的未建模的压迫以及使用敏感属性纠正不公正的可能性的背景下瓦解的。在最后一节,我提出了在现有不公正的背景下衡量公平的另一种框架:分配公平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bias in Artificial Intelligence Models in Financial Services Privacy Preserving Machine Learning Systems AIES '22: AAAI/ACM Conference on AI, Ethics, and Society, Oxford, United Kingdom, May 19 - 21, 2021 To Scale: The Universalist and Imperialist Narrative of Big Tech AIES '21: AAAI/ACM Conference on AI, Ethics, and Society, Virtual Event, USA, May 19-21, 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1