A Rapid Fabrication Methodology for Payload Modules, Piloted for the Observation of Queen Honey Bees (Apis mellifera) in Microgravity

R. Smith, Felix Kraemer, C. Bader, Miana Smith, Aaron Weber, M. Simone-Finstrom, N. Wilson-Rich, N. Oxman
{"title":"A Rapid Fabrication Methodology for Payload Modules, Piloted for the Observation of Queen Honey Bees (Apis mellifera) in Microgravity","authors":"R. Smith, Felix Kraemer, C. Bader, Miana Smith, Aaron Weber, M. Simone-Finstrom, N. Wilson-Rich, N. Oxman","doi":"10.2478/gsr-2021-0008","DOIUrl":null,"url":null,"abstract":"Abstract Microgravity experiment modules for living organisms have been instrumental to space research, yet their design remains complex and costly. As the private space sector enables more widely available payloads for researchers, it is increasingly necessary to design experimental modules innovatively so that they are proportionately accessible. To ease this bottleneck, we developed a rapid fabrication methodology for producing custom modules compatible with commercial payload slots. Our method creates a unified housing geometry, based on a given component layout, which is fabricated in a digital design and subtractive manufacturing process from a single lightweight foam material. This module design demonstrated a 25–50% reduction in chassis weight compared with existing models, and is extremely competitive in manufacturing time, simplicity, and cost. To demonstrate the ability to capture data on previously limited areas of space biology, we apply this methodology to create an autonomous, video-enabled module for sensing and observing queen and retinue bees aboard the Blue Origin New Shepard 11 (NS-11) suborbital flight. To explore whether spaceflight impacts queen fitness, results used high-definition visual data enabled by the module's compact build to analyze queen-worker regulation under microgravity stress (n = 2, with controls). Overall, this generalizable method for constructing experimental modules provides wider accessibility to space research and new data on honey bee behavior in microgravity.","PeriodicalId":90510,"journal":{"name":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/gsr-2021-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Microgravity experiment modules for living organisms have been instrumental to space research, yet their design remains complex and costly. As the private space sector enables more widely available payloads for researchers, it is increasingly necessary to design experimental modules innovatively so that they are proportionately accessible. To ease this bottleneck, we developed a rapid fabrication methodology for producing custom modules compatible with commercial payload slots. Our method creates a unified housing geometry, based on a given component layout, which is fabricated in a digital design and subtractive manufacturing process from a single lightweight foam material. This module design demonstrated a 25–50% reduction in chassis weight compared with existing models, and is extremely competitive in manufacturing time, simplicity, and cost. To demonstrate the ability to capture data on previously limited areas of space biology, we apply this methodology to create an autonomous, video-enabled module for sensing and observing queen and retinue bees aboard the Blue Origin New Shepard 11 (NS-11) suborbital flight. To explore whether spaceflight impacts queen fitness, results used high-definition visual data enabled by the module's compact build to analyze queen-worker regulation under microgravity stress (n = 2, with controls). Overall, this generalizable method for constructing experimental modules provides wider accessibility to space research and new data on honey bee behavior in microgravity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有效载荷模块的快速制造方法,用于观察微重力下的蜂王(Apis mellifera)
生物微重力实验模块一直是太空研究的重要工具,但其设计仍然复杂且昂贵。随着私营空间部门使研究人员能够更广泛地获得有效载荷,越来越有必要创新地设计实验模块,以便按比例地获得它们。为了缓解这一瓶颈,我们开发了一种快速制造方法,用于生产与商业有效载荷插槽兼容的定制模块。我们的方法基于给定的组件布局创建了统一的房屋几何形状,该几何形状由单一轻质泡沫材料以数字设计和减法制造工艺制造。与现有型号相比,该模块设计可将底盘重量减轻25-50%,并且在制造时间、简单性和成本方面极具竞争力。为了展示在以前有限的空间生物学领域捕获数据的能力,我们应用这种方法创建了一个自主的、支持视频的模块,用于在蓝色起源新谢泼德11号(NS-11)亚轨道飞行中感知和观察蜂王和随行蜜蜂。为了探索太空飞行是否会影响蜂王的健康,研究结果使用了由该模块紧凑结构支持的高清视觉数据来分析微重力压力下蜂王的调节(n = 2,对照组)。总的来说,这种可推广的实验模块构建方法为空间研究和微重力下蜜蜂行为的新数据提供了更广泛的可访问性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Effects of Simulated and Real Microgravity on Vascular Smooth Muscle Cells. Design, Build and Testing of Hardware to Safely Harvest Microgreens in Microgravity A Novel Approach to Teaching a General Education Course on Astrobiology Nonlinear Agglomeration of Bimodal Colloids under Microgravity Design of Spaceflight Hardware for Plant Growth in a Sealed Habitat for Experiments on the Moon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1