Randomized Wasserstein Barycenter Computation: Resampling with Statistical Guarantees

IF 1.9 Q1 MATHEMATICS, APPLIED SIAM journal on mathematics of data science Pub Date : 2020-12-11 DOI:10.1137/20m1385263
F. Heinemann, A. Munk, Y. Zemel
{"title":"Randomized Wasserstein Barycenter Computation: Resampling with Statistical Guarantees","authors":"F. Heinemann, A. Munk, Y. Zemel","doi":"10.1137/20m1385263","DOIUrl":null,"url":null,"abstract":"We propose a hybrid resampling method to approximate finitely supported Wasserstein barycenters on large-scale datasets, which can be combined with any exact solver. Nonasymptotic bounds on the expected error of the objective value as well as the barycenters themselves allow to calibrate computational cost and statistical accuracy. The rate of these upper bounds is shown to be optimal and independent of the underlying dimension, which appears only in the constants. Using a simple modification of the subgradient descent algorithm of Cuturi and Doucet, we showcase the applicability of our method on a myriad of simulated datasets, as well as a real-data example which are out of reach for state of the art algorithms for computing Wasserstein barycenters.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"69 1","pages":"229-259"},"PeriodicalIF":1.9000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20m1385263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 16

Abstract

We propose a hybrid resampling method to approximate finitely supported Wasserstein barycenters on large-scale datasets, which can be combined with any exact solver. Nonasymptotic bounds on the expected error of the objective value as well as the barycenters themselves allow to calibrate computational cost and statistical accuracy. The rate of these upper bounds is shown to be optimal and independent of the underlying dimension, which appears only in the constants. Using a simple modification of the subgradient descent algorithm of Cuturi and Doucet, we showcase the applicability of our method on a myriad of simulated datasets, as well as a real-data example which are out of reach for state of the art algorithms for computing Wasserstein barycenters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机Wasserstein重心计算:具有统计保证的重抽样
我们提出了一种混合重采样方法来近似大规模数据集上有限支持的Wasserstein质心,该方法可以与任何精确求解器结合使用。目标值的期望误差的非渐近边界以及质心本身允许校准计算成本和统计精度。这些上界的速率被证明是最优的,并且与底层维度无关,它只出现在常数中。通过对Cuturi和Doucet的次梯度下降算法的简单修改,我们展示了我们的方法在无数模拟数据集上的适用性,以及一个真实数据示例,这些示例对于计算Wasserstein质心的最先进算法来说是无法达到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entropic Optimal Transport on Random Graphs A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks Adversarial Robustness of Sparse Local Lipschitz Predictors The GenCol Algorithm for High-Dimensional Optimal Transport: General Formulation and Application to Barycenters and Wasserstein Splines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1