Nowcasting and Forecasting GDP in Emerging Markets Using Global Financial and Macroeconomic Diffusion Indexes

Oğuzhan Çepni, I. Guney, Norman R. Swanson
{"title":"Nowcasting and Forecasting GDP in Emerging Markets Using Global Financial and Macroeconomic Diffusion Indexes","authors":"Oğuzhan Çepni, I. Guney, Norman R. Swanson","doi":"10.2139/ssrn.3208812","DOIUrl":null,"url":null,"abstract":"Abstract This paper contributes to the nascent literature on nowcasting and forecasting GDP in emerging market economies using big data methods. This is done by analyzing the usefulness of various dimension-reduction, machine learning and shrinkage methods, including sparse principal component analysis (SPCA), the elastic net, the least absolute shrinkage operator, and least angle regression when constructing predictions using latent global macroeconomic and financial factors (diffusion indexes) in a dynamic factor model (DFM). We also utilize a judgmental dimension-reduction method called the Bloomberg Relevance Index (BRI), which is an index that assigns a measure of importance to each variable in a dataset depending on the variable’s usage by market participants. Our empirical analysis shows that, when specified using dimension-reduction methods (particularly BRI and SPCA), DFMs yield superior predictions relative to both benchmark linear econometric models and simple DFMs. Moreover, global financial and macroeconomic (business cycle) diffusion indexes constructed using targeted predictors are found to be important in four of the five emerging market economies that we study (Brazil, Mexico, South Africa, and Turkey). These findings point to the importance of spillover effects across emerging market economies, and underscore the significance of characterizing such linkages parsimoniously when utilizing high-dimensional global datasets.","PeriodicalId":18164,"journal":{"name":"Macroeconomics: National Income & Product Accounts eJournal","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macroeconomics: National Income & Product Accounts eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3208812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Abstract This paper contributes to the nascent literature on nowcasting and forecasting GDP in emerging market economies using big data methods. This is done by analyzing the usefulness of various dimension-reduction, machine learning and shrinkage methods, including sparse principal component analysis (SPCA), the elastic net, the least absolute shrinkage operator, and least angle regression when constructing predictions using latent global macroeconomic and financial factors (diffusion indexes) in a dynamic factor model (DFM). We also utilize a judgmental dimension-reduction method called the Bloomberg Relevance Index (BRI), which is an index that assigns a measure of importance to each variable in a dataset depending on the variable’s usage by market participants. Our empirical analysis shows that, when specified using dimension-reduction methods (particularly BRI and SPCA), DFMs yield superior predictions relative to both benchmark linear econometric models and simple DFMs. Moreover, global financial and macroeconomic (business cycle) diffusion indexes constructed using targeted predictors are found to be important in four of the five emerging market economies that we study (Brazil, Mexico, South Africa, and Turkey). These findings point to the importance of spillover effects across emerging market economies, and underscore the significance of characterizing such linkages parsimoniously when utilizing high-dimensional global datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全球金融和宏观经济扩散指数的新兴市场GDP临近预测
本文对新兴市场经济体使用大数据方法进行临近预测和GDP预测的新兴文献进行了贡献。这是通过分析各种降维、机器学习和收缩方法的有用性来完成的,包括稀疏主成分分析(SPCA)、弹性网、最小绝对收缩算子和最小角度回归,当在动态因素模型(DFM)中使用潜在的全球宏观经济和金融因素(扩散指数)构建预测时。我们还使用了一种称为彭博相关性指数(BRI)的判断降维方法,该指数根据市场参与者对变量的使用情况,为数据集中的每个变量分配一个重要度量。我们的实证分析表明,当使用降维方法(特别是BRI和SPCA)指定时,相对于基准线性计量模型和简单DFMs, DFMs产生了更好的预测。此外,使用目标预测因子构建的全球金融和宏观经济(商业周期)扩散指数在我们研究的五个新兴市场经济体中的四个(巴西、墨西哥、南非和土耳其)中被发现是重要的。这些发现指出了新兴市场经济体之间溢出效应的重要性,并强调了在利用高维全球数据集时,对这种联系进行精简描述的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Consumer Welfare in the Digital Economy Nowcasting GDP and its Components in a Data-Rich Environment: The Merits of the Indirect Approach Nowcasting the Spanish Economy Using Very High Frequency Tax Data Off to a Good Start: The NBER and the Measurement of National Income Measuring the Impact of Free Goods on Real Household Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1