{"title":"PP-GraspNet: 6-DoF grasp generation in clutter using a new grasp representation method","authors":"Enbo Li, Haibo Feng, Yili Fu","doi":"10.1108/ir-08-2022-0196","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe grasping task of robots in dense cluttered scenes from a single-view has not been solved perfectly, and there is still a problem of low grasping success rate. This study aims to propose an end-to-end grasp generation method to solve this problem.\n\n\nDesign/methodology/approach\nA new grasp representation method is proposed, which cleverly uses the normal vector of the table surface to derive the grasp baseline vectors, and maps the grasps to the pointed points (PP), so that there is no need to add orthogonal constraints between vectors when using a neural network to predict rotation matrixes of grasps.\n\n\nFindings\nExperimental results show that the proposed method is beneficial to the training of the neural network, and the model trained on synthetic data set can also have high grasping success rate and completion rate in real-world tasks.\n\n\nOriginality/value\nThe main contribution of this paper is that the authors propose a new grasp representation method, which maps the 6-DoF grasps to a PP and an angle related to the tabletop normal vector, thereby eliminating the need to add orthogonal constraints between vectors when directly predicting grasps using neural networks. The proposed method can generate hundreds of grasps covering the whole surface in about 0.3 s. The experimental results show that the proposed method has obvious superiority compared with other methods.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-08-2022-0196","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The grasping task of robots in dense cluttered scenes from a single-view has not been solved perfectly, and there is still a problem of low grasping success rate. This study aims to propose an end-to-end grasp generation method to solve this problem.
Design/methodology/approach
A new grasp representation method is proposed, which cleverly uses the normal vector of the table surface to derive the grasp baseline vectors, and maps the grasps to the pointed points (PP), so that there is no need to add orthogonal constraints between vectors when using a neural network to predict rotation matrixes of grasps.
Findings
Experimental results show that the proposed method is beneficial to the training of the neural network, and the model trained on synthetic data set can also have high grasping success rate and completion rate in real-world tasks.
Originality/value
The main contribution of this paper is that the authors propose a new grasp representation method, which maps the 6-DoF grasps to a PP and an angle related to the tabletop normal vector, thereby eliminating the need to add orthogonal constraints between vectors when directly predicting grasps using neural networks. The proposed method can generate hundreds of grasps covering the whole surface in about 0.3 s. The experimental results show that the proposed method has obvious superiority compared with other methods.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.