Experimental Study of Precursor Concentration the Co3O4 Thin Films Used as Solar Absorbers

IF 0.6 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Annales De Chimie-science Des Materiaux Pub Date : 2020-05-08 DOI:10.18280/acsm.440207
W. Daranfed, N. Guermat, K. Mirouh
{"title":"Experimental Study of Precursor Concentration the Co3O4 Thin Films Used as Solar Absorbers","authors":"W. Daranfed, N. Guermat, K. Mirouh","doi":"10.18280/acsm.440207","DOIUrl":null,"url":null,"abstract":"Received: 11 December 2019 Accepted: 6 February 2020 The objective of this work is to develop Co3O4 films and to investigate the influence of different precursor concentration on the structural, morphological, optical and electrical properties of Co3O4 thin films, in order to improve the optoelectronic properties of these films. Finally, we have developed thin films of Co3O4 at different precursor concentrations (0.05 to 0.15 mol/l) under a substrate temperature set to 400°C and 4 minutes as deposition time. XRD analysis has shown that the deposited layers have a cubic spinel structure with a preferential orientation along the direction (311). The morphological studies have shown that the surface morphology of the films was almost homogeneous and dense. The presence of the peaks associated with the Co and O elements, which were present in the EDS analysis, confirmed the composition of the films. The optical characterization of our film has shown a low transmittance (from 16 to 0.9%) in the visible region and the IR region varies between 40 to 2% over the range of precursor concentration varied between 0.05 and 0.125 mol/l and a high absorbance of the order of 100% for the film deposit of 0.15 mol/l. The obtained gap values are ranged from 1.44 to 1.52 eV and 2.05 to 2 eV for lower and higher energy regions in the range of precursor concentration 0.05–0.125 mol/l. The film prepared at 0.15 mol/l, had a good p-type electrical semiconductor and good absorbance of sunlight.","PeriodicalId":7897,"journal":{"name":"Annales De Chimie-science Des Materiaux","volume":"100 9 1","pages":"121-126"},"PeriodicalIF":0.6000,"publicationDate":"2020-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Chimie-science Des Materiaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/acsm.440207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

Received: 11 December 2019 Accepted: 6 February 2020 The objective of this work is to develop Co3O4 films and to investigate the influence of different precursor concentration on the structural, morphological, optical and electrical properties of Co3O4 thin films, in order to improve the optoelectronic properties of these films. Finally, we have developed thin films of Co3O4 at different precursor concentrations (0.05 to 0.15 mol/l) under a substrate temperature set to 400°C and 4 minutes as deposition time. XRD analysis has shown that the deposited layers have a cubic spinel structure with a preferential orientation along the direction (311). The morphological studies have shown that the surface morphology of the films was almost homogeneous and dense. The presence of the peaks associated with the Co and O elements, which were present in the EDS analysis, confirmed the composition of the films. The optical characterization of our film has shown a low transmittance (from 16 to 0.9%) in the visible region and the IR region varies between 40 to 2% over the range of precursor concentration varied between 0.05 and 0.125 mol/l and a high absorbance of the order of 100% for the film deposit of 0.15 mol/l. The obtained gap values are ranged from 1.44 to 1.52 eV and 2.05 to 2 eV for lower and higher energy regions in the range of precursor concentration 0.05–0.125 mol/l. The film prepared at 0.15 mol/l, had a good p-type electrical semiconductor and good absorbance of sunlight.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Co3O4薄膜用作太阳吸收剂前驱体浓度的实验研究
本工作的目的是制备Co3O4薄膜,并研究不同前驱体浓度对Co3O4薄膜结构、形态、光学和电学性能的影响,以改善这些薄膜的光电性能。最后,我们在衬底温度为400℃,沉积时间为4分钟的条件下,制备了不同前驱体浓度(0.05 ~ 0.15 mol/l)的Co3O4薄膜。XRD分析表明,沉积层呈立方尖晶石结构,且沿311方向优先取向。形态学研究表明,膜的表面形貌几乎均匀且致密。与Co和O元素相关的峰的存在,在EDS分析中出现,证实了薄膜的组成。光学表征表明,前驱体浓度在0.05 ~ 0.125 mol/l范围内,薄膜在可见光区的透射率较低(16% ~ 0.9%),红外区的透射率在40% ~ 2%之间变化;膜沉积浓度为0.15 mol/l时,吸光度高达100%。前驱体浓度在0.05 ~ 0.125 mol/l范围内,高低能区间隙值分别为1.44 ~ 1.52 eV和2.05 ~ 2 eV。在0.15 mol/l的浓度下制备的薄膜具有良好的p型电半导体和良好的吸光性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annales De Chimie-science Des Materiaux
Annales De Chimie-science Des Materiaux 工程技术-材料科学:综合
CiteScore
1.70
自引率
25.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: The ACSM is concerning the cutting-edge innovations in solid material science. The journal covers a broad spectrum of scientific fields, ranging all the way from metallurgy, semiconductors, solid mineral compounds, organic macromolecular compounds to composite materials. The editorial board encourages the submission of original papers that deal with all aspects of material science, including but not limited to synthesis and processing, property characterization, reactivity and reaction kinetics, evolution in service, and recycling. The papers should provide new insights into solid materials and make a significant original contribution to knowledge.
期刊最新文献
Mechanical and Thermal Characteristics of Concrete Reinforced with Crushed Glass and Glass Fiber: An Experimental Study Structural Performance of Reinforced Concrete Columns with Bracing Reinforcement Elevated Temperature Effects on Geo-Polymer Concrete: An Experimental and Numerical-Review Study Investigating the Mechanical and Thermal Properties of Concrete with Recycled Nanoplastics for Enhanced Sustainability Experimental Investigation on Using Electrical Cable Waste as Fine Aggregate and Reinforcing Fiber in Sustainable Mortar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1