On the Design of Generalized LDPC Codes with Component BCJR Decoding

Yanfang Liu, P. Olmos, David G. M. Mitchell
{"title":"On the Design of Generalized LDPC Codes with Component BCJR Decoding","authors":"Yanfang Liu, P. Olmos, David G. M. Mitchell","doi":"10.1109/GLOBECOM42002.2020.9322143","DOIUrl":null,"url":null,"abstract":"Generalized low-density parity-check (GLDPC) codes, where the single parity-check (SPC) nodes are replaced by generalized constraint (GC) nodes, are known to offer a reduced gap to capacity when compared with conventional LDPC codes, while also maintaining linear growth of minimum distance. However, for certain classes of practical GLDPC codes, there remains a gap to capacity even when utilizing blockwise decoding algorithm at GC nodes. In this work, we propose to optimize the design of GLDPC codes where the GC nodes are decoded with a trellis-based bit-wise Bahl-Cocke-Jelinek- Raviv (BCJR) component decoding algorithm. We analyze the asymptotic threshold behavior of GLDPC codes and determine the optimal proportion of the GC nodes in the GLDPC Tanner graph.We show significant performance improvements compared to existing designs with the same order of decoding complexity.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"16 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9322143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Generalized low-density parity-check (GLDPC) codes, where the single parity-check (SPC) nodes are replaced by generalized constraint (GC) nodes, are known to offer a reduced gap to capacity when compared with conventional LDPC codes, while also maintaining linear growth of minimum distance. However, for certain classes of practical GLDPC codes, there remains a gap to capacity even when utilizing blockwise decoding algorithm at GC nodes. In this work, we propose to optimize the design of GLDPC codes where the GC nodes are decoded with a trellis-based bit-wise Bahl-Cocke-Jelinek- Raviv (BCJR) component decoding algorithm. We analyze the asymptotic threshold behavior of GLDPC codes and determine the optimal proportion of the GC nodes in the GLDPC Tanner graph.We show significant performance improvements compared to existing designs with the same order of decoding complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BCJR译码的广义LDPC码设计
广义低密度奇偶校验(GLDPC)码,其中单个奇偶校验(SPC)节点被广义约束(GC)节点取代,与传统的LDPC码相比,已知可以提供更小的容量间隙,同时还保持最小距离的线性增长。然而,对于某些类别的实际GLDPC代码,即使在GC节点上使用块解码算法,仍然存在容量差距。在这项工作中,我们提出优化GLDPC代码的设计,其中GC节点使用基于网格的bhl - cocke - jelinek - Raviv (BCJR)分量解码算法进行解码。我们分析了GLDPC码的渐近阈值行为,确定了GLDPC Tanner图中GC节点的最优比例。与具有相同解码复杂度的现有设计相比,我们显示了显着的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AirID: Injecting a Custom RF Fingerprint for Enhanced UAV Identification using Deep Learning Oversampling Algorithm based on Reinforcement Learning in Imbalanced Problems FAST-RAM: A Fast AI-assistant Solution for Task Offloading and Resource Allocation in MEC Achieving Privacy-Preserving Vehicle Selection for Effective Content Dissemination in Smart Cities Age-optimal Transmission Policy for Markov Source with Differential Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1