S. Nadri, Linli Xie, Naser Alijabbari, J. Gaskins, B. Foley, P. Hopkins, R. Weikle
{"title":"Steady-state thermal analysis of an integrated 160 GHz balanced quadrupler based on quasi-vertical Schottky diodes","authors":"S. Nadri, Linli Xie, Naser Alijabbari, J. Gaskins, B. Foley, P. Hopkins, R. Weikle","doi":"10.1109/IRMMW-THz.2015.7327482","DOIUrl":null,"url":null,"abstract":"This work reports on a steady-state thermal analysis of a 160 GHz balanced quadrupler, based on a quasi-vertical varactor Schottky diode process, for high power applications. The chip is analyzed by solving the heat equation via the 3D finite element method. Time-Domain Thermoreflectance (TDTR) was used to measure the thermal conductivity of the different materials used in the model. A maximum anode temperature of 64.9°C was found from the simulation. The addition of an extra beam lead connected to the block, for heat sinking, was found to reduce this maximum temperature to 41.0°C.","PeriodicalId":6577,"journal":{"name":"2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)","volume":"101 11 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THz.2015.7327482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This work reports on a steady-state thermal analysis of a 160 GHz balanced quadrupler, based on a quasi-vertical varactor Schottky diode process, for high power applications. The chip is analyzed by solving the heat equation via the 3D finite element method. Time-Domain Thermoreflectance (TDTR) was used to measure the thermal conductivity of the different materials used in the model. A maximum anode temperature of 64.9°C was found from the simulation. The addition of an extra beam lead connected to the block, for heat sinking, was found to reduce this maximum temperature to 41.0°C.