WEAR MECHANISM MAP OF MAGNESIUM ALLOY COATED WITH WC/CU ELECTRODE USING ELECTRO DISCHARGE ALLOYING

U. Elaiyarasan, Satheeshkumar, C. Senthilkumar
{"title":"WEAR MECHANISM MAP OF MAGNESIUM ALLOY COATED WITH WC/CU ELECTRODE USING ELECTRO DISCHARGE ALLOYING","authors":"U. Elaiyarasan, Satheeshkumar, C. Senthilkumar","doi":"10.37255/jme.v4i1pp056-059","DOIUrl":null,"url":null,"abstract":"The objective of this research is to study the wear mechanism of ZE41A magnesium alloy coated with WC/Cu material using EDC (Electro discharge coating). Dry sliding experiments were conducted with pin on disc method with different sliding condition such as normal load (1.5 kg - 3.5 kg), sliding speed (100rpm - 300 rpm) and sliding time (3min - 7min). Wear mechanism map was drawn against sliding condition of normal load and sliding speed which has been utilized to study the dominance of particular wear mechanism that dominates a particular wear regime. Different wear regime such as mild wear, severe wear ultra severe wear was developed by adjustment of contour line of the wear rate map. Various mechanisms such as abrasion, oxidation, delamination, plastic deformation and melting were observed in the worn surface","PeriodicalId":38895,"journal":{"name":"Academic Journal of Manufacturing Engineering","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37255/jme.v4i1pp056-059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this research is to study the wear mechanism of ZE41A magnesium alloy coated with WC/Cu material using EDC (Electro discharge coating). Dry sliding experiments were conducted with pin on disc method with different sliding condition such as normal load (1.5 kg - 3.5 kg), sliding speed (100rpm - 300 rpm) and sliding time (3min - 7min). Wear mechanism map was drawn against sliding condition of normal load and sliding speed which has been utilized to study the dominance of particular wear mechanism that dominates a particular wear regime. Different wear regime such as mild wear, severe wear ultra severe wear was developed by adjustment of contour line of the wear rate map. Various mechanisms such as abrasion, oxidation, delamination, plastic deformation and melting were observed in the worn surface
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
放电合金化镀wc / cu电极镁合金的磨损机理图
本研究的目的是研究电火花镀覆WC/Cu材料的ZE41A镁合金的磨损机理。在正常载荷(1.5 kg ~ 3.5 kg)、滑动速度(100rpm ~ 300rpm)、滑动时间(3min ~ 7min)等不同滑动条件下,采用销盘法进行干滑动实验。在正常载荷和滑动速度条件下绘制了磨损机理图,用于研究特定磨损机制对特定磨损状态的支配作用。通过调整磨损率图的等高线,形成了轻度磨损、重度磨损、超重度磨损等不同的磨损状态。磨损表面出现了磨损、氧化、分层、塑性变形和熔化等多种机制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Academic Journal of Manufacturing Engineering
Academic Journal of Manufacturing Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Investigations On Mechanical Properties Of Micro Particulates (Al2O3/B4C) Reinforced In Aluminium 7075 Matrix Composite Welding Windows for Aluminum-Magnesium and Titanium-Steel Explosive Cladding Tribological Performance Evaluation of TMPTO Based Nano-Lubricants Modeling of Resistance Spot Welding Using FEM Efficiency Enhancement of Heat Transfer Fluids by Using Carbon Dots Nanoparticles Derived From Aloe Vera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1