Numerical simulation of brittle failure of rock using MPS method and DEM

J. Takekawa, H. Mikada
{"title":"Numerical simulation of brittle failure of rock using MPS method and DEM","authors":"J. Takekawa, H. Mikada","doi":"10.3997/2352-8265.20140231","DOIUrl":null,"url":null,"abstract":"We developed a novel method for simulating brittle failure of rock based on the combination of the moving particle semi-implicit (MPS) and the discrete element methods (DEM). The MPS method is a kind of particle methods, and can simulate behavior of continuous bodies without going through a calibration process. On the other hand, DEM is used to calculate collision of fragments after macroscopic failure. This strategy can simulate deformation behavior of rock in not only pre-failure but also post-failure behavior in a seamless manner. We evaluate the effectiveness of the proposed method using a numerical experiment. Our experiment consists of a brittle sphere and a steel plate. The sphere collides with the plate with a certain speed. The failure criterion is only applied to particles constitute the brittle sphere. We compare the failure pattern of the brittle sphere with that of a laboratory experiment. Our result shows excellent agreement with the laboratory result. This indicates that the proposed method could be an alternative to the conventional numerical methods for simulating discontinuous behavior of brittle materials.","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"2009 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Geoscience Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2352-8265.20140231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We developed a novel method for simulating brittle failure of rock based on the combination of the moving particle semi-implicit (MPS) and the discrete element methods (DEM). The MPS method is a kind of particle methods, and can simulate behavior of continuous bodies without going through a calibration process. On the other hand, DEM is used to calculate collision of fragments after macroscopic failure. This strategy can simulate deformation behavior of rock in not only pre-failure but also post-failure behavior in a seamless manner. We evaluate the effectiveness of the proposed method using a numerical experiment. Our experiment consists of a brittle sphere and a steel plate. The sphere collides with the plate with a certain speed. The failure criterion is only applied to particles constitute the brittle sphere. We compare the failure pattern of the brittle sphere with that of a laboratory experiment. Our result shows excellent agreement with the laboratory result. This indicates that the proposed method could be an alternative to the conventional numerical methods for simulating discontinuous behavior of brittle materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MPS法和DEM的岩石脆性破坏数值模拟
提出了一种基于移动粒子半隐式(MPS)和离散元法(DEM)相结合的模拟岩石脆性破坏的新方法。MPS方法是一种粒子方法,可以模拟连续体的行为而无需经过校准过程。另一方面,利用DEM计算碎片宏观破坏后的碰撞。该方法不仅可以模拟岩石破坏前的变形行为,而且可以无缝地模拟岩石破坏后的变形行为。通过数值实验验证了该方法的有效性。我们的实验由一个易碎的球体和一块钢板组成。球体以一定的速度与板块碰撞。该破坏准则仅适用于构成脆性球的颗粒。将脆性球的破坏模式与实验室实验结果进行了比较。我们的结果与实验室结果非常吻合。这表明,该方法可以替代传统的数值方法来模拟脆性材料的不连续行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tectonic Landform and Paleoseismic Activity of the Northernmost Sumatran Fault, Aceh Province, Indonesia Pressure-to-depth conversion models for metamorphic rocks: derivation and applications Standardized Variability Index (SVI): A multiscale index to assess the variability of precipitation Overpressured underthrust sediment in the Nankai Trough forearc inferred from high-frequency receiver function inversion Simple Topographic Parameter for Along-trench Friction Distribution of Shallow Megathrust Fault
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1