9E-6 Acoustic Realignment of Nematic Liquid Crystals by Guided Waves

Y. Lee, Wun-Bin Shih, Yu-Wei Su, C. Yin
{"title":"9E-6 Acoustic Realignment of Nematic Liquid Crystals by Guided Waves","authors":"Y. Lee, Wun-Bin Shih, Yu-Wei Su, C. Yin","doi":"10.1109/ULTSYM.2007.213","DOIUrl":null,"url":null,"abstract":"This paper presents an experimental evidence to correlate the acousto-optic effect of nematic liquid crystals to modal excitations of guided acoustic waves. The optic axes of liquid crystal molecules in a cell can be tilted by ultrasound at oblique incidence. The cell filled with homeotropically aligned liquid crystal material, 5CB, is fully immersed in a water tank situated between two crossed polarizers. Multi-modal guided acoustic waves have been excited in cell by changing the angle of incidence and driving frequency. The liquid crystal material sandwiched between two glass plates is regarded as a Newtonian fluid and modeled to be an isotropic hypothetical solid. The phase velocity dispersion curves and associated modal strains within the liquid crystal cell are determined numerically. Comparison between measured data and prediction reveals that guided acoustic waves have influence on the acousto-optic response of liquid crystals rather than bulk acoustic waves. Simulated results show that homeotropically and homogeneously aligned liquid crystals can be affected by symmetric and antisymmetric modes, respectively.","PeriodicalId":6355,"journal":{"name":"2007 IEEE Ultrasonics Symposium Proceedings","volume":"15 1","pages":"832-835"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Ultrasonics Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2007.213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an experimental evidence to correlate the acousto-optic effect of nematic liquid crystals to modal excitations of guided acoustic waves. The optic axes of liquid crystal molecules in a cell can be tilted by ultrasound at oblique incidence. The cell filled with homeotropically aligned liquid crystal material, 5CB, is fully immersed in a water tank situated between two crossed polarizers. Multi-modal guided acoustic waves have been excited in cell by changing the angle of incidence and driving frequency. The liquid crystal material sandwiched between two glass plates is regarded as a Newtonian fluid and modeled to be an isotropic hypothetical solid. The phase velocity dispersion curves and associated modal strains within the liquid crystal cell are determined numerically. Comparison between measured data and prediction reveals that guided acoustic waves have influence on the acousto-optic response of liquid crystals rather than bulk acoustic waves. Simulated results show that homeotropically and homogeneously aligned liquid crystals can be affected by symmetric and antisymmetric modes, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
9E-6导波对向列型液晶的声学重新排列
本文给出了向列液晶的声光效应与导声波模态激励之间的实验证据。细胞内液晶分子的光轴可以在斜入射的超声作用下发生倾斜。电池充满了同向异性排列的液晶材料5CB,完全浸入位于两个交叉偏振片之间的水箱中。通过改变入射角和驱动频率,可以激发多模态导声波。将夹在两块玻璃板之间的液晶材料视为牛顿流体,并将其建模为假设的各向同性固体。用数值方法确定了液晶单元内的相速度色散曲线和相关模态应变。实测数据与预测数据的对比表明,引导声波对液晶声光响应的影响大于体声波。模拟结果表明,均匀排列和均匀排列的液晶分别受到对称模式和反对称模式的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
10B-3 Vibrating Interventional Device Detection Using Real-Time 3D Color Doppler P5E-8 The Method of Reverberation-Ray Matrix - A New Matrix Analysis of Waves in Piezoelectric Laminates P1D-4 Characteristics of a Novel Magnetic Field Sensor Using Piezoelectric Vibrations P5C-3 Field Simulation Parameters Design for Realistic Statistical Parameters of Radio - Frequency Ultrasound Images 2F-1 Fabrication and Performance of a High-Frequency Geometrically Focussed Composite Transducer with Triangular Pillar Geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1