{"title":"Microscopic fatigue damage progress in CFRP cross-ply laminates","authors":"Nobuo Takeda, Shinji Ogihara, Akira Kobayashi","doi":"10.1016/0010-4361(95)90879-5","DOIUrl":null,"url":null,"abstract":"<div><p>Damage progress in toughened-type carbon fibre-reinforced plastic (CFRP) cross-ply laminates under tensile fatigue loading was measured using the replica technique. The laminate configuration was [0/90<sub>m</sub>/0], where m = 4, 8 and 12. The damage parameters, transverse crack density and delamination ratio, were determined. A power-law model was proposed, relating the cyclic strain range and the number of cycles at transverse crack initiation. Based on experimental data, a simple shear-lag analysis combined with the modified Paris law was conducted to model the transverse crack multiplication. An extension of the shearlag analysis for laminates containing delaminations initiating from the tips of the transverse cracks was used to conduct a modified Paris law analysis for delamination growth.</p></div>","PeriodicalId":100296,"journal":{"name":"Composites","volume":"26 12","pages":"Pages 859-867"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0010-4361(95)90879-5","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0010436195908795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65
Abstract
Damage progress in toughened-type carbon fibre-reinforced plastic (CFRP) cross-ply laminates under tensile fatigue loading was measured using the replica technique. The laminate configuration was [0/90m/0], where m = 4, 8 and 12. The damage parameters, transverse crack density and delamination ratio, were determined. A power-law model was proposed, relating the cyclic strain range and the number of cycles at transverse crack initiation. Based on experimental data, a simple shear-lag analysis combined with the modified Paris law was conducted to model the transverse crack multiplication. An extension of the shearlag analysis for laminates containing delaminations initiating from the tips of the transverse cracks was used to conduct a modified Paris law analysis for delamination growth.