A Multi-Grained Attention Residual Network for Image Classification

Wu Xiaogang, T. Tanprasert
{"title":"A Multi-Grained Attention Residual Network for Image Classification","authors":"Wu Xiaogang, T. Tanprasert","doi":"10.37936/ecti-cit.2023172.251536","DOIUrl":null,"url":null,"abstract":"Attention mechanisms in deep learning can focus on critical features and ignore irrelevant details in the target task. This paper proposes a new multi-grained attention model (MGAN) to extract parts from images. The model includes a multi-grain spatial attention (MSA) mechanism and a multi-grain channel attention (MCA) mechanism. We use different convolutional branches and pooling layers to focus on the crucial information in the sample feature space and extract richer multi-grain features from the image. The model uses ResNet and Res2Net as the backbone networks to implement the image classification task. Experiments on the CIFAR10/100 and Mini-Imagenet datasets show that the proposed model MGAN can better focus on the critical information in the sample feature space, extract richer multi-grain features from the images, and significantly improve the image classification accuracy of the network.","PeriodicalId":38808,"journal":{"name":"Transactions on Electrical Engineering, Electronics, and Communications","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Electrical Engineering, Electronics, and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37936/ecti-cit.2023172.251536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Attention mechanisms in deep learning can focus on critical features and ignore irrelevant details in the target task. This paper proposes a new multi-grained attention model (MGAN) to extract parts from images. The model includes a multi-grain spatial attention (MSA) mechanism and a multi-grain channel attention (MCA) mechanism. We use different convolutional branches and pooling layers to focus on the crucial information in the sample feature space and extract richer multi-grain features from the image. The model uses ResNet and Res2Net as the backbone networks to implement the image classification task. Experiments on the CIFAR10/100 and Mini-Imagenet datasets show that the proposed model MGAN can better focus on the critical information in the sample feature space, extract richer multi-grain features from the images, and significantly improve the image classification accuracy of the network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于图像分类的多粒度注意残差网络
深度学习中的注意机制可以关注目标任务中的关键特征,而忽略无关的细节。本文提出了一种新的多粒度注意力模型(MGAN)来提取图像中的部分。该模型包括多粒空间注意(MSA)机制和多粒通道注意(MCA)机制。我们使用不同的卷积分支和池化层来关注样本特征空间中的关键信息,并从图像中提取更丰富的多粒度特征。该模型使用ResNet和Res2Net作为骨干网络来实现图像分类任务。在CIFAR10/100和Mini-Imagenet数据集上的实验表明,所提出的模型MGAN能够更好地关注样本特征空间中的关键信息,从图像中提取更丰富的多粒度特征,显著提高网络的图像分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transactions on Electrical Engineering, Electronics, and Communications
Transactions on Electrical Engineering, Electronics, and Communications Engineering-Electrical and Electronic Engineering
CiteScore
1.60
自引率
0.00%
发文量
45
期刊最新文献
Improving Air Quality Prediction with a Hybrid Bi-LSTM and GAN Model Sentiment Analysis on Large-Scale Covid-19 Tweets using Hybrid Convolutional LSTM Based on Naïve Bayes Sentiment Modeling Collaborative Movie Recommendation System using Enhanced Fuzzy C-Means Clustering with Dove Swarm Optimization Algorithm A Performance of AFIRO among Asynchronous Iteration Strategy Metaheuristic Algorithms Particle Swarm Optimization Trained Feedforward Neural Network for Under-Voltage Load Shedding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1